abstractmath.org 2.0
help with abstract math


Produced by Charles Wells   Revised 2014-05-18
Introduction to this website  website TOC  website index  blog

INTEGERS

An integer is any whole number. An integer can be zero, greater than zero or less than zero.  The integers greater than zero are the natural numbers. I will not give a formal definition of integer here but the Wikipedia article gives one. This article describes their most elementary properties and points out some sources of confusion.

Properties of integers

Closure

If $m$ and $n$ are integers, then so are $m+n$, $m–n$ and $mn.$

This is described by saying that the integers are closed under addition, subtraction and multiplication. They are not closed under division. For example, $3$ and $5$ are integers but $3/5$ is not an integer. 

Compare:

Positive and negative

For any integer $n$:

Some things to pay attention to:

In some countries, schools may use “positive” to mean “nonnegative”, so that zero is positive. Occasionally, students have told me that their high school teachers said $0$ is both positive and negative.

Images and metaphors for integers

I will give two ways it is useful to think about integers.  You will no doubt be familiar with them.  They are included here partly to illustrate the ways in which we think about mathematical objects using images and metaphors.  (In other words, in this section, I am not teaching you about the integers as much as I am teaching you about images and metaphors!)

Ordered list infinite in both directions

Credit and debit

A negative integer such as $-5$ does not have an immediately obvious interpretation as the number of elements of a set.  One interpretation that does make sense of negative integers involves credit and debit.  If you have $n$ dollars (for $n$ positive) that is what you have. Having $-n$ dollars represents the fact that you owe $n$ dollars.


Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 2.5 License.