Tag Archives: type

Problems caused for students by the two languages of math

The two languages of math

Mathematics is communicated using two languages: Mathematical English and the symbolic language of math (more about them in two languages).

This post is a collection of examples of the sorts of trouble that the two languages cause beginning abstract math students. I have gathered many of them here since they are scattered throughout the literature. I would welcome suggestions for other references to problems caused by the languages of math.

In many of the examples, I give links to the literature and leave you to fish out the details there. Almost all of the links are to documents on the internet.

There is an extensive list of references.

Conjectures

Scattered through this post are conjectures. Like most of my writing about difficulties students have with math language, these conjectures are based on personal observation over 37 years of teaching mostly computer engineering and math majors. The only hard research of any sort I have done in math ed consists of the 426 citations of written mathematical writing included in the Handbook of Mathematical Discourse.

Disclaimer

This post is an attempt to gather together the ways in which math language causes trouble for students. It is even more preliminary and rough than most of my other posts.

  • The arrangement of the topics is unsatisfactory. Indeed, the topics are so interrelated that it is probably impossible to give a satisfactory linear order to them. That is where writing on line helps: Lots of forward and backward references.
  • Other people and I have written extensively about some of the topics, and they have lots of links. Other topics are stubs and need to be filled out. I have probably missed important points about and references to many of them.
  • Please note that many of the most important difficulties that students have with understanding mathematical ideas are not caused by the languages of math and are not represented here.

I expect to revise this article periodically as I find more references and examples and understand some of the topics better. Suggestions would be very welcome.

Intricate symbolic expressions

I have occasionally had students tell me that have great difficulty understanding a complicated symbolic expression. They can’t just look at it and learn something about what it means.

Example

Consider the symbolic expression \[\displaystyle\left(\frac{x^3-10}{3 e^{-x}+1}\right)^6\]

Now, I could read this expression aloud as if it were text, or more precisely describe it so that someone else could write it down. But if I am in math mode and see this expression I don’t “read” it, even to myself.

I am one of those people who much of the time think in pictures or abstractions without words. (See references here.)

In this case I would look at the expression as a structured picture. I could determine a number of things about it, and when I was explaining it I would point at the board, not try to pronounce it or part of it:

  • The denominator is always positive so the expression is defined for all reals.
  • The exponent is even so the value of the expression is always nonnegative. I would say, “This (pointing at the exponent) is an even power so the expression is never negative.”
  • It is zero in exactly one place, namely $x=\sqrt[3]{10}$.
  • Its derivative is also $0$ at $\sqrt[3]{10}$. You can see this without calculating the formula for the derivative (ugh).

There is much more about this example in Zooming and Chunking.

Algebra in high school

There are many high school students stymied by algebra, never do well at it, and hate math as a result. I have known many such people over the years. A revealing remark that I have heard many times is that “algebra is totally meaningless to me”. This is sometimes accompanied by a remark that geometry is “obvious” or something similar. This may be because they think they have to “read” an algebraic expression instead of studying it as they would a graph or a diagram.

Conjecture

Many beginning abstractmath students have difficulty understanding a symbolic expression like the one above. Could this be cause by resistance to treating the expression as a structure to be studied?

Context-sensitive pronunciation

A symbolic assertion (“formula” to logicians) can be embedded in a math English sentence in different ways, requiring the symbolic assertion to be pronounced in different ways. The assertion itself is not modified in any way in these different situations.

I used the phrase “symbolic assertion” in abstractmath.org because students are confused by the logicians’ use of “formula“.
In everyday English, “$\text{H}_2\text{O}$” is the “formula” for water, but it is a term, not an assertion.

Example

“For every real number $x\gt0$ there is a real number $y$ such that $x\gt y\gt0$.”

  • In the sentence above, the assertion “$x\gt0$” must be pronounced “$x$ that is greater than $0$” or something similar.
  • The standalone assertion “$x\gt0$” is pronounced “$x$ is greater than $0$.”
  • The sentence “Let $x\gt0$” must be pronounced “Let $x$ be greater than $0$”.

The consequence is that the symbolic assertion, in this case “$x\gt0$”, does not reveal that role it plays in the math English sentence that it is embedded in.

Many of the examples occurring later in the post are also examples of context-sensitive pronunciation.

Conjectures

Many students are subconsciously bothered by the way the same symbolic expression is pronounced differently in different math English sentences.

This probably impedes some students’ progress. Teachers should point this phenomenon out with examples.

Students should be discouraged from pronouncing mathematical expressions.

For one thing, this could get you into trouble. Consider pronouncing “$\sqrt{3+5}+6$”. In any case, when you are reading any text you don’t pronounce the words, you just take in their meaning. Why not take in the meaning of algebraic expressions in the same way?

Parenthetic assertions

A parenthetic assertion is a symbolic assertion embedded in a sentence in math English in such a way that is a subordinate clause.

Example

In the math English sentence

“For every real number $x\gt0$ there is a real number $y$ such that $x\gt y\gt0$”

mentioned above, the symbolic assertion “$x\gt0$” plays the role of a subordinate clause.

It is not merely that the pronunciation is different compared to that of the independent statement “$x\gt0$”. The math English sentence is hard to parse. The obvious (to an experienced mathematician) meaning is that the beginning of the sentence can be read this way: “For every real number $x$, which is bigger than $0$…”.

But new student might try to read it is “For every real number $x$ is greater than $0$ …” by literally substituting the standalone meaning of “$x\gt0$” where it occurs in the sentence. This makes the text what linguists call a garden path sentence. The student has to stop and start over to try to make sense of it, and the symbolic expression lacks the natural language hints that help understand how it should be read.

Note that the other two symbolic expressions in the sentence are not parenthetic assertions. The phrase “real number” needs to be followed by a term, and it is, and the phrase “such that” must be followed by a clause, and it is.

More examples

  • “Consider the circle $S^1\subseteq\mathbb{C}=\mathbb{R}^2$.” This has subordinate clauses to depth 2.
  • “The infinite series $\displaystyle\sum_{k=1}^\infty\frac{1}{k^2}$ converges to $\displaystyle\zeta(2)=\frac{\pi^2}{6}\approx1.65$”
  • “We define a null set in $I:=[a,b]$ to be a set that can be covered by a countable of intervals with arbitrarily small total length.” This shows a parenthetical definition.
  • “Let $F:A\to B$ be a function.”
    A type declaration is a function? In any case, it would be better to write this sentence simply as “Let $F:A\to B$”.

David Butler’s post Contrapositive grammar has other good examples.

Math texts are in general badly written. Students need to be taught how to read badly written math as well as how to write math clearly. Those that succeed (in my observation) in being able to read math texts often solve the problem by glancing at what is written and then reconstructing what the author is supposedly saying.

Conjectures

Some students are baffled, or at least bothered consciously or unconsciously, by parenthetic assertions, because the clues that would exist in a purely English statement are missing.

Nevertheless, many if not most math students read parenthetic assertions correctly the first time and never even notice how peculiar they are.

What makes the difference between them and the students who are stymied by parenthetic assertions?

There is another conjecture concerning parenthetic assertions below.

Context-sensitive meaning

“If” in definitions

Example

The word “if” in definitions does not mean the same thing that it means in other math statements.

  • In the definition “An integer is even if it is divisible by $2$,” “if” means “if and only if”. In particular, the definition implies that a function is not even if it is not divisible by $2$.
  • In a theorem, for example “If a function is differentiable, then it is continuous”, the word “if” has the usual one-way meaning. In particular, in this case, a continuous function might not be differentiable.

Context-sensitive meaning occurs in ordinary English as well. Think of a strike in baseball.

Conjectures

The nearly universal custom of using “if” to mean “if and only if” in definitions makes it a harder for students to understand implication.

This custom is not the major problem in understanding the role of definitions. See my article Definitions.

Underlying sets

Example

In a course in group theory, a lecturer may say at one point, “Let $F:G\to H$ be a homomorphism”, and at another point, “Let $g\in G$”.

In the first sentence, $G$ refers to the group, and in the second sentence it refers to the underlying set of the group.

This usage is almost universal. I think the difficulty it causes is subtle. When you refer to $\mathbb{R}$, for example, you (usually) are referring to the set of real numbers together with all its canonical structure. The way students think of it, a real number comes with its many relations and connections with the other real numbers, ordering, field properties, topology, and so on.

But in a group theory class, you may define the Klein $4$-group to be $\mathbb{Z}_2\times\mathbb{Z}_2$. Later you may say “the symmetry group of a rectangle that is not a square is the Klein $4$-group.” Almost invariably some student will balk at this.

Referring to a group by naming its underlying set is also an example of synecdoche.

Conjecture

Students expect every important set in math to have a canonical structure. When they get into a course that is a bit more abstract, suddenly the same set can have different structures, and math objects with different underlying sets can have the same structure. This catastrophic shift in a way of thinking should be described explicitly with examples.

Way back when, it got mighty upsetting when the earth started going around the sun instead of vice versa. Remind your students that these upheavals happen in the math world too.

Overloaded notation

Identity elements

A particular text may refer to the identity element of any group as $e$.

This is as far as I know not a problem for students. I think I know why: There is a generic identity element. The identity element in any group is an instantiation of that generic identity element. The generic identity element exists in the sketch for groups; every group is a functor defined on that sketch. (Or if you insist, the generic identity element exists in the first order theory for groups.) I suspect mathematicians subconsciously think of identity elements in this way.

Matrix multiplication

Matrix multiplication is not commutative. A student may forget this and write $(A^2B^2=(AB)^2$. This also happens in group theory courses.

This problem occurs because the symbolic language uses the same symbol for many different operations, in this case the juxtaposition notation for multiplication. This phenomenon is called overloaded notation and is discussed in abstractmath.org here.

Conjecture

Noncommutative binary operations written using juxtaposition cause students trouble because going to noncommutative operations requires abandoning some overlearned reflexes in doing algebra.

Identity elements seem to behave the same in any binary operation, so there are no reflexes to unlearn. There are generic binary operations of various types as well. That’s why mathematicians are comfortable overloading juxtaposition. But to get to be a mathematician you have to unlearn some reflexes.

Negation

Sometimes you need to reword a math statement that contains symbolic expressions. This particularly causes trouble in connection with negation.

Ordinary English

The English language is notorious among language learners for making it complicated to negate a sentence. The negation of “I saw that movie” is “I did not see that movie”. (You have to put “d** not” (using the appropriate form of “do”) before the verb and then modify the verb appropriately.) You can’t just say “I not saw that movie” (as in Spanish) or “I saw not that movie” (as in German).

Conjecture

The method in English used to negate a sentence may cause problems with math students whose native language is not English. (But does it cause math problems with those students?)

Negating symbolic expressions

Examples

  • The negation of “$n$ is even and a prime” is “$n$ is either odd or it is not a prime”. The negation should not be written “$n$ is not even and a prime” because that sentence is ambiguous. In the heat of doing a proof students may sometimes think the negation is “$n$ is odd and $n$ is not a prime,” essentially forgetting about DeMorgan. (He must roll over in his grave a lot.)
  • The negation of “$x\gt0$” is “$x\leq0$”. It is not “$x\lt0$”. This is a very common mistake.

These examples are difficulties caused by not understanding the math. They are not directly caused by difficulties with the languages of math.

Negating expressions containing parenthetic assertions

Suppose you want to prove:

“If $f:\mathbb{R}\to\mathbb{R}$ is differentiable, then $f$ is continuous”.

A good way to do this is by using the contrapositive. A mechanical way of writing the contrapositive is:

“If $f$ is not continuous, then $f:\mathbb{R}\to\mathbb{R}$ is not differentiable.”

That is not good. The sentence needs to be massaged:

“If $f:\mathbb{R}\to\mathbb{R}$ is not continuous, then $f$ is not differentiable.”

Even better would be to write the original sentence as:

“Suppose $f:\mathbb{R}\to\mathbb{R}$. Then if $f$ is differentiable, then $f$ is continuous.”

This is discussed in detail in David Butler’s post Contrapositive grammar.

Conjecture

Students need to be taught to understand parenthetic assertions that occur in the symbolic language and to learn to extract a parenthetic assertion and write it as a standalone assertion ahead of the statement it occurs in.

Scope

The scope of a word or variable consists of the part of the text for which its current definition is in effect.

Examples

  • “Suppose $n$ is divisible by $4$.” The scope is probably the current paragraph or perhaps the current proof. This means that the properties of $n$ are constrained in that section of the text.
  • “In this book, all rings are unitary.” This will hold for the whole book.

There are many more examples in the abstractmath.org article Scope.

If you are a grasshopper (you like to dive into the middle of a book or paper to find out what it says), knowing the scope of a variable can be hard to determine. It is particularly difficult for commonly used words or symbols that have been defined differently from the usual usage. You may not suspect that this has happened since it might be define once early in the text. Some books on writing mathematics have urged writers to keep global definitions to a minimum. This is good advice.

Finding the scope is considerably easier when the text is online and you can search for the definition.

Conjecture

Knowing the scope of a word or variable can be difficult. It is particular hard when the word or variable has a large scope (chapter or whole book.)

Variables

Variables are often introduced in math writing and then used in the subsequent discussion. In a complicated discussion, several variables may be referred to that have different statuses, some of them introduced several pages before. There are many particular ways discussed below that can cause trouble for students. This post is restricted to trouble in connection with the languages of math. The concept of variable is difficult in itself, not just because of the way the math languages represent them, but that is not covered here.

Much of this part of the post is based on work of Susanna Epp, including three papers listed in the references. Her papers also include many references to other work in the math ed literature that have to do with understanding variables.

See also Variables in abstractmath.org and Variables in Wikipedia.

Types

Students blunder by forgetting the type of the variable they are dealing with. The example given previously of problems with matrix multiplication is occasioned by forgetting the type of a variable.

Conjecture

Students sometimes have problems because they forget the data type of the variables they are dealing with. This is primarily causes by overloaded notation.

Dependent and independent

If you define $y=x^2+1$, then $x$ is an independent variable and $y$ is a dependent variable. But dependence and independence of variablesare more general than that example suggests.
In an epsilon-delta proof of the limit of a function (example below,) $\varepsilon$ is independent and $\delta$ is dependent on $\varepsilon$, although not functionally dependent.

Conjecture

Distinguishing dependent and independent variables causes problems, particularly when the dependence is not clearly functional.

I recently ran across a discussion of this on the internet but failed to record where I saw it. Help!

Bound and free

This causes trouble with integration, among other things. It is discussed in abstractmath.org in Variables and Substitution. I expect to add some references to the math ed literature soon.

Instantiation

Some of these variables may be given by existential instantiation, in which case they are dependent on variables that define them. Others may be given by universal instantiation, in which case the variable is generic; it is independent of other variables, and you can’t impose arbitrary restrictions on it.

Existential instantiation

A theorem that an object exists under certain conditions allows you to name it and use it by that name in further arguments.

Example

Suppose $m$ and $n$ are integers. Then by definition, $m$ divides $n$ if there is an integer $q$ such that $n=qm$. Then you can use “$q$” in further discussion, but $q$ depends on $m$ and $n$. You must not use it with any other meaning unless you start a new paragraph and redefine it.

So the following (start of a) “proof” blunders by ignoring this restriction:

Theorem: Prove that if an integer $m$ divides both integers $n$ and $p$, then $m$ divides $n+p$.

“Proof”: Let $n = qm$ and $p = qm$…”

Universal instantiation

It is a theorem that for any integer $n$, there is no integer strictly between $n$ and $n+1$. So if you are given an arbitrary integer $k$, there is no integer strictly between $k$ and $k+1$. There is no integer between $42$ and $43$.

By itself, universal instantiation does not seem to cause problems, provided you pay attention to the types of your variables. (“There is no integer between $\pi$ and $\pi+1$” is false.)

However, when you introduce variables using both universal and existential quantification, students can get confused.

Example

Consider the definition of limit:

Definition: $\lim_{x\to a} f(x)=L$ if and only if for every $\epsilon\gt0$ there is a $\delta\gt0$ for which if $|x-a|\lt\delta$ then $|f(x)-L|\lt\epsilon$.

A proof for a particular instance of this definition is given in detail in Rabbits out of a Hat. In this proof, you may not put constraints on $\epsilon$ except the given one that it is positive. On the other hand, you have to come up with a definition of $\delta$ and prove that it works. The $\delta$ depends on what $f$, $a$ and $L$ are, but there are always infinitely many values of $\delta$ which fit the constraints, and you have to come up with only one. So in general, two people doing this proof will not get the same answer.

Reference

Susanna Epp’s paper Proof issues with existential quantification discusses the problems that students have with both existential and universal quantification with excellent examples. In particular, that paper gives examples of problems students have that are not hinted at here.

References

A nearly final version of The Handbook of Mathematical Discourse is available on the web with links, including all the citations. This version contains some broken links. I am unable to recompile it because TeX has evolved enough since 2003 that the source no longer compiles. The paperback version (without the citations) can be bought as a book here. (There are usually cheaper used versions on Amazon.)

Abstractmath.org is a website for beginning students in abstract mathematics. It includes most of the material in the Handbook, but not the citations. The Introduction gives you a clue as to what it is about.

Two languages

My take on the two languages of math are discussed in these articles:

The Language of Mathematics, by Mohan Ganesalingam, covers these two languages in more detail than any other book I know of. He says right away on page 18 that mathematical language consists of “textual sentences with symbolic material embedded like ‘islands’ in the text.” So for him, math language is one language.

I have envisioned two separate languages for math in abstractmath.org and in the Handbook, because in fact you can in principle translate any mathematical text into either English or logical notation (first order logic or type theory), although the result in either case would be impossible to understand for any sizeable text.

Topics in abstractmath.org

Context-sensitive interpretation.

“If” in definitions.

Mathematical English.

Parenthetic assertion.

Scope

Semantic contamination.

Substitution.

The symbolic language of math

Variables.

Zooming and Chunking.

Topics in the Handbook of mathematical discourse.

These topics have a strong overlap with the topics with the same name in abstractmath.org. They are included here because the Handbook contains links to citations of the usage.

Context-sensitive.

“If” in definitions.

Parenthetic assertion.

Substitution.

Posts in Gyre&Gimble

Names

Naming mathematical objects

Rabbits out of a Hat.

Semantics of algebra I.

Syntactic and semantic thinkers

Technical meanings clash with everyday meanings

Thinking without words.

Three kinds of mathematical thinkers

Variations in meaning in math.

Other references

Contrapositive grammar, blog post by David Butler.

Proof issues with existential quantification, by Susanna Epp.

The role of logic in teaching proof, by Susanna Epp (2003).

The language of quantification in mathematics instruction, by Susanna Epp (1999).

The Language of Mathematics: A Linguistic and Philosophical Investigation
by Mohan Ganesalingam, 2013. (Not available from the internet.)

On the communication of mathematical reasoning, by Atish Bagchi, and Charles Wells (1998a), PRIMUS, volume 8, pages 15–27.

Variables in Wikipedia.

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 2.5 License.

Send to Kindle

Notation for sets

This is a revision of the section of abstractmath.org on notation for sets.

Sets of numbers

The following notation for sets of numbers is fairly standard.

Remarks

  • Some authors use $\mathbb{I}$ for $\mathbb{Z}$, but $\mathbb{I}$ is also used for the unit interval.
  • Many authors use $\mathbb{N}$ to denote the nonnegative integers instead
    of the positive ones.
  • To remember $\mathbb{Q}$, think “quotient”.
  • $\mathbb{Z}$ is used because the German word for “integer” is “Zahl”.

Until the 1930’s, Germany was the world center for scientific and mathematical study, and at least until the 1960’s, being able to read scientific German was was required of anyone who wanted a degree in science. A few years ago I was asked to transcribe some hymns from a German hymnbook — not into English, but merely from fraktur (the old German alphabet) into the Roman alphabet. I sometimes feel that I am the last living American to be able to read fraktur easily.

Element notation

The expression “$x\in A$” means that $x$ is an element of the set $A$. The expression “$x\notin A$” means that $x$ is not an element of $A$.

“$x\in A$” is pronounced in any of the following ways:

  • “$x$ is in $S$”.
  • “$x$ is an element of $S$”.
  • “$x$ is a member of $S$”.
  • “$S$ contains $x$”.
  • “$x$ is contained in $S$”.

Remarks

  • Warning: The math English phrase “$A$ contains $B$” can mean either “$B\in A$” or “$B\subseteq A$”.
  • The Greek letter epsilon occurs in two forms in math, namely $\epsilon$ and $\varepsilon$. Neither of them is the symbol for “element of”, which is “$\in$”. Nevertheless, it is not uncommon to see either “$\epsilon$” or “$\varepsilon$” being used to mean “element of”.
Examples
  • $4$ is an element of all the sets $\mathbb{N}$, $\mathbb{Z}$, $\mathbb{Q}$, $\mathbb{R}$, $\mathbb{C}$.
  • $-5\notin \mathbb{N}$ but it is an element of all the others.

List notation

Definition: list notation

A set with a small number of elements may be denoted by listing the elements inside braces (curly brackets). The list must include exactly all of the elements of the set and nothing else.

Example

The set $\{1,\,3,\,\pi \}$ contains the numbers $1$, $3$ and $\pi $ as elements, and no others. So $3\in \{1,3,\pi \}$ but $-3\notin \{1,\,3,\,\pi \}$.

Properties of list notation

List notation shows every element and nothing else

If $a$ occurs in a list notation, then $a$ is in the set the notation defines.  If it does not occur, then it is not in the set.

Be careful

When I say “$a$ occurs” I don’t mean it necessarily occurs using that name. For example, $3\in\{3+5,2+3,1+2\}$.

The order in which the elements are listed is irrelevant

For example, $\{2,5,6\}$ and $\{5,2,6\}$ are the same set.

Repetitions don’t matter

$\{2,5,6\}$, $\{5,2,6\}$, $\{2,2,5,6 \}$ and $\{2,5,5,5,6,6\}$ are all different representations of the same set. That set has exactly three elements, no matter how many numbers you see in the list notation.

Multisets may be written with braces and repeated entries, but then the repetitions mean something.

When elements are sets

When (some of) the elements in list notation are themselves sets (more about that here), care is required.  For example, the numbers $1$ and $2$  are not elements of the set \[S:=\left\{ \left\{ 1,\,2,\,3 \right\},\,\,\left\{ 3,\,4 \right\},\,3,\,4 \right\}\]The elements listed include the set $\{1, 2, 3\}$ among others, but not the number $2$.  The set $S$ contains four elements, two sets and two numbers. 

Another way of saying this is that the element relation is not transitive: The facts that $A\in B$ and $B\in C$ do not imply that $A\in C$. 

Sets are arbitrary

  • Any mathematical object can be the element of a set.
  • The elements of a set do not have to have anything in common.
  • The elements of a set do not have to form a pattern.
Examples
  • $\{1,3,5,6,7,9,11,13,15,17,19\}$ is a set. There is no point in asking, “Why did you put that $6$ in there?” (Sets can be arbitrary.)
  • Let $f$ be the function on the reals for which $f(x)=x^3-2$. Then \[\left\{\pi^3,\mathbb{Q},f,42,\{1,2,7\}\right\}\] is a set. Sets do not have to be homogeneous in any sense.


Setbuilder notation

Definition:

Suppose $P$ is an assertion. Then the expression “$\left\{x|P(x) \right\}$” denotes the set of all objects $x$ for which $P(x)$ is true. It contains no other elements.

  • The notation “$\left\{ x|P(x) \right\}$” is called setbuilder notation.
  • The assertion $P$ is called the defining condition for the set.
  • The set $\left\{ x|P(x) \right\}$ is called the truth set of the assertion $P$.
Examples

In these examples, $n$ is an integer variable and $x$ is a real variable..

  • The expression “$\{n| 1\lt n\lt 6 \}$” denotes the set $\{2, 3, 4, 5\}$. The defining condition is “$1\lt n\lt 6$”.  The set $\{2, 3, 4, 5\}$ is the truth set of the assertion “n is an integer and $1\lt n\lt 6$”.
  • The notation $\left\{x|{{x}^{2}}-4=0 \right\}$ denotes the set $\{2,-2\}$.
  • $\left\{ x|x+1=x \right\}$ denotes the empty set.
  • $\left\{ x|x+0=x \right\}=\mathbb{R}$.
  • $\left\{ x|x\gt6 \right\}$ is the infinite set of all real numbers bigger than $6$.  For example, $6\notin \left\{ x|x\gt6 \right\}$ and $17\pi \in \left\{ x|x\gt6 \right\}$.
  • The set $\mathbb{I}$ defined by $\mathbb{I}=\left\{ x|0\le x\le 1 \right\}$ has among its elements $0$, $1/4$, $\pi /4$, $1$, and an infinite number of
    other numbers. $\mathbb{I}$ is fairly standard notation for this set – it is called the unit interval.

Usage and terminology

  • A colon may be used instead of “|”. So $\{x|x\gt6\}$ could be written $\{x:x\gt6\}$.
  • Logicians and some mathematicians called the truth set of $P$ the extension of $P$. This is not connected with the usual English meaning of “extension” as an add-on.
  • When the assertion $P$ is an equation, the truth set of $P$ is usually called the solution set of $P$. So $\{2,-2\}$ is the solution set of $x^2=4$.
  • The expression “$\{n|1\lt n\lt6\}$” is commonly pronounced as “The set of integers such that $1\lt n$ and $n\lt6$.” This means exactly the set $\{2,3,4,5\}$. Students whose native language is not English sometimes assume that a set such as $\{2,4,5\}$ fits the description.

Setbuilder notation is tricky

Looking different doesn’t mean they are different.

A set can be expressed in many different ways in setbuilder notation. For example, $\left\{ x|x\gt6 \right\}=\left\{ x|x\ge 6\text{ and }x\ne 6 \right\}$. Those two expressions denote exactly the same set. (But $\left\{x|x^2\gt36 \right\}$ is a different set.)

Russell’s Paradox

In certain areas of math research, setbuilder notation can go seriously wrong. See Russell’s Paradox if you are curious.

Variations on setbuilder notation

An expression may be used left of the vertical line in setbuilder notation, instead of a single variable.

Giving the type of the variable

You can use an expression on the left side of setbuilder notation to indicate the type of the variable.

Example

The unit interval $I$ could be defined as \[\mathbb{I}=\left\{x\in \mathrm{R}\,|\,0\le x\le 1 \right\}\]making it clear that it is a set of real numbers rather than, say rational numbers.  You can always get rid of the type expression to the left of the vertical line by complicating the defining condition, like this:\[\mathbb{I}=\left\{ x|x\in \mathrm{R}\text{ and }0\le x\le 1 \right\}\]

Other expressions on the left side

Other kinds of expressions occur before the vertical line in setbuilder notation as well.

Example

The set\[\left\{ {{n}^{2}}\,|\,n\in \mathbb{Z} \right\}\]consists of all the squares of integers; in other words its elements are 0,1,4,9,16,….  This definition could be rewritten as $\left\{m|\text{ there is an }n\in \mathrm{}\text{ such that }m={{n}^{2}} \right\}$.

Example

Let $A=\left\{1,3,6 \right\}$.  Then $\left\{ n-2\,|\,n\in A\right\}=\left\{ -1,1,4 \right\}$.

Warning

Be careful when you read such expressions.

Example

The integer $9$ is an element of the set \[\left\{{{n}^{2}}\,|\,n\in \text{ Z and }n\ne 3 \right\}\]It is true that $9={{3}^{2}}$ and that $3$ is excluded by the defining condition, but it is also true that $9={{(-3)}^{2}}$ and $-3$ is not an integer ruled out by the defining condition.

Reference

Sets. Previous post.

Acknowledgments

Toby Bartels for corrections.

Creative Commons License< ![endif]>

This work is licensed under a Creative Commons Attribution-ShareAlike 2.5 License.

Send to Kindle