Tag Archives: substitution

Pattern recognition in understanding math

Abstract patterns

This post is a revision of the article on pattern recognition in abstractmath.org.

When you do math, you must recognize abstract patterns that occur in

  • Symbolic expressions
  • Geometric figures
  • Relations between different kinds of math structures.
  • Your own mental representations of mathematical objects

This happens in high school algebra and in calculus, not just in the higher levels of abstract math.

Examples

Most of these examples are revisited in the section called Laws and Constraints.

At most

For real numbers $x$ and $y$, the phrase “$x$ is at most $y$” means by definition $x\le y$. To understand this definition requires recognizing the pattern “$x$ is at most $y$” no matter what expressions occur in place of $x$ and $y$, as long as they evaluate to real numbers.

Examples

  • “$\sin x$ is at most $1$” means that $\sin x\le 1$. This happens to be true for all real $x$.
  • “$3$ is at most $7$” means that $3\leq7$. You may think that “$3$ is at most $7$” is a silly thing to say, but it nevertheless means that $3\leq7$ and so is a correct statement.
  • “$x^2+(y-1)^2$ is at most $5$” means that
    $x^2+(y-1)^2\leq5$. This is true for some pairs $(x,y)$ and false for others, so it is a constraint. It defines the disk below:

The product rule for derivatives

The product rule for differentiable functions $f$ and $g$ tells you that the derivative of $f(x)g(x)$ is \[f'(x)\,g(x)+f(x)\,g'(x)\]

Example

You recognize that the expression ${{x}^{2}}\sin x$ fits the pattern $f(x)g(x)$ with $f(x)={{x}^{2}}$ and $g(x)=\sin x$. Therefore you know that the derivative of ${{x}^{2}}\,\sin x$ is \[2x\sin x+{{x}^{2}}\cos x\]

The quadratic formula

The quadratic formula for the solutions of an equation of the form $a{{x}^{2}}+bx+c=0$ is usually given as\[r=\frac{-b\pm
\sqrt{{{b}^{2}}-4ac}}{2a}\]

Example

If you are asked for the roots of $3{{x}^{2}}-2x-1=0$, you recognize that the polynomial on the left fits the pattern $a{{x}^{2}}+bx+c$ with

  • $a\leftarrow3$ (“$a$ replaced by $3$”)
  • $b\leftarrow-2$
  • and $c\leftarrow-1$.

Then
substituting those values in the quadratic formula gives you the roots $-1/3$ and $1$.

Difficulties with the quadratic formula

A little problem

The quadratic formula is easy to use but it can still cause pattern recognition problems. Suppose you are asked to find the solutions of $3{{x}^{2}}-7=0$. Of course you can do this by simple algebra — but pretend that the first thing you thought of was using the quadratic formula.

  • Then you got upset because you have to apply it to $a{{x}^{2}}+bx+c$
  • and $3{{x}^{2}}-7$ has only two terms
  • but $a{{x}^{2}}+bx+c$ has three terms…
  • (Help!)
  • Do Not Be Anguished:
  • Write
    $3{{x}^{2}}-7$ as $3{{x}^{2}}+0\cdot x-7$, so $a=3$, $b=0$ and $c=-7$.
  • Then put those values into the quadratic formula and you get $x=\pm \sqrt{\frac{7}{3}}$.   
  • This is an example of the following useful principle:


    Write zero cleverly.

    I suspect that most people reading this would not have had the problem with $3{{x}^{2}}-7$ that I have just described. But before you get all insulted, remember:


    The thing about really easy examples is that they give you the point without getting you lost in some complicated stuff you don’t understand very well.

    A fiendisher problem

      Even college students may have trouble with the following problem (I know because I have tried it on them):

    What are the solutions of the equation $a+bx+c{{x}^{2}}=0$?

    The answer

             

    \[r=\frac{-b\pm
    \sqrt{{{b}^{2}}-4ac}}{2a}\]

    is wrong. The correct answer is

                                     \[r=\frac{-b\pm
    \sqrt{{{b}^{2}}-4ac}}{2c}\]


    When you remember a pattern with particular letters in it and an example has some of the same letters in it, make sure they match the pattern!

    The substitution rule for integration

    The chain rule says that the derivative of a function of the form $f(g(x))$ is $f'(g(x))g'(x)$. From this you get the substitution rule for finding indefinite integrals:

                                      \[\int{f'(g(x))g'(x)\,dx}=f(g(x))+C\]

    Example

    To find $\int{2x\,\cos
    ({{x}^{2}})\,dx}$, you recognize that you can take $f(x)=\sin x$and $g(x)={{x}^{2}}$ in the formula, getting \[\int{2x\,\cos ({{x}^{2}})\,dx}=\sin ({{x}^{2}})\]    Note that in the way I wrote the integral, the functions occur in the opposite order from the pattern. That kind of thing happens a lot.

    Laws and constraints

    • The statement “$(x+1)^2=x^2+2x+1$” is a pattern that is true for all numbers $x$. $3^2=2^2+2\times2+1$ and $(-2)^2=(-1)^2+2\times(-1)+1$, and so on. Such a pattern is a universal assertion, so it is a theorem. When the statement is an equation, as in this case, it is also called a law.
    • The statement “$\sin x\leq 1$” is also true for all $x$, and so is a theorem.
    • The statement “$x^2+(y-1)^2$ is at most $5$” is true for some real numbers and not others, so it is not a theorem, although it is a constraint.
    • The quadratic formula says that:
      The solutions of an equation
      of the form $a{{x}^{2}}+bx+c=0$ is
      given by\[r=\frac{-b\pm
      \sqrt{{{b}^{2}}-4ac}}{2a}\]

      This is true for all complex numbers $a$, $b$, $c$.
      The $x$ in the equation is not a free variable, but a “variable to be solved for” and does not appear in the quadratic formula. Theorems like the quadratic formula are usually called “formulas” rather than “laws”.

    • The product rule for derivatives

      The derivative of $f(x)g(x)$ is $f'(x)\,g(x)+f(x)\,g'(x)$

      is true for all differentiable functions $f$ and $g$. That means it is true for both of these choices of $f$ and $g$:

      • $f(x)=x$ and $g(x)=x\sin x$
      • $f(x)=x^2$ and $g(x)=\sin x$

      But both choices of $f$ and $g$ refer to the same function $x^2\sin x$, so if you apply the product rule in either case you should get the same answer. (Try it).

    Some bothersome types of pattern recognition

    Dependence on conventions

    Definition: A quadratic polynomial in $x$is an expression of the form $a{{x}^{2}}+bx+c$.   

    Examples

    • $-5{{x}^{2}}+32x-5$ is a quadratic polynomial: You have to recognize that it fits the pattern in the definition by writing it as $(-5){{x}^{2}}+32x+(-5)$
    • So is ${{x}^{2}}-1$: You have to recognize that it fits the definition by writing it as ${{x}^{2}}+0\cdot x+(-1)$ (I wrote zero cleverly).

    Some authors would just say, “A quadratic polynomial is an expression of the form $a{{x}^{2}}+bx+c$” leaving you to deduce from conventions on variables that it is a polynomial in $x$ instead of in $a$ (for example).

    Note also that I have deliberately not mentioned what sorts of numbers $a$, $b$, $c$ and $x$ are. The authors may assume that you know they are using real numbers.

    An expression as an instance of substitution

    One particular type of pattern recognition that comes up all the time in math is recognizing that a given expression is an instance of a substitution into a known expression.

    Example

    Students are sometimes baffled when a proof uses the fact that ${{2}^{n}}+{{2}^{n}}={{2}^{n+1}}$ for positive integers $n$. This requires the recognition of the patterns $x+x=2x$ and $2\cdot
    \,{{2}^{n}}={{2}^{n+1}}$.

    Similarly ${{3}^{n}}+{{3}^{n}}+{{3}^{n}}={{3}^{n+1}}$.

    Example

    The assertion

    \[{{x}^{2}}+{{y}^{2}}\ge 0\ \ \ \ \ \text{(1)}\]

    has as a special case

    \[(-x^2-y^2)^2+(y^2-x^2)^2\ge
    0\ \ \ \ \ \text{(2)}\]

    which involves the substitutions $x\leftarrow -{{x}^{2}}-{{y}^{2}}$ and $y\leftarrow
    {{y}^{2}}-{{x}^{2}}$.

    Remarks
    • If you see (2) in a text and the author blithely says it is “never negative”, that is because it is of the form \[{{x}^{2}}+{{y}^{2}}\ge 0\] with certain expressions substituted for $x$ and $y$. (See substitution and The only axiom for algebra.)
    • The fact that there are minus signs in (2) and that $x$ and $y$ play different roles in (1) and in (2) are red herrings. See ratchet effect and variable clash.
    • Most people with some experience in algebra would see quickly that (2) is correct by using chunking. They would visualize (2) as

      \[(\text{something})^2+(\text{anothersomething})^2\ge0\]
      This shows that in many cases


      chunking is a psychological inverse to substitution

    • Note that when you make these substitutions you have to insert appropriate parentheses (more here). After you make the substitution, the expression of course can be simplified a whole bunch, to

      \[2({{x}^{4}}+{{y}^{4}})\ge0\]

    • A common cause of error in doing this (a mistake I make sometimes) is to try to substitute and simplify at the same time. If the situation is complicated, it is best to

      substitute as literally as possible and then simplify

    Integration by Parts

    The rule for integration by parts says that

                             \[\int{f(x)\,g'(x)\,dx=f(x)\,g(x)-\int{f'(x)\,g(x)\,dx}}\]

    Suppose you need to find $\int{\log x\,dx}$.(In abstractmath.org, “log” means ${{\log }_{e}}$).  Then we can recognize this integral as having the pattern for the left side of the parts formula with $f(x)=1$ and $g(x)=\log \,x$. Therefore

    \[\int{\log x\,dx=x\log x-\int{\frac{1}{x}dx=x\log \,x-x+c}}\]

    How on earth did I think to recognize $\log x$ as $1\cdot \log x$??  
    Well, to tell the truth because some nerdy guy (perhaps I should say some other nerdy guy) clued me in when I was taking freshman calculus. Since then I have used this device lots of times without someone telling me — but not the first time.

    This is an example of another really useful principle:


    Write $1$ cleverly.

    Two different substitutions give the same expression

    Some proofs involve recognizing that a symbolic expression or figure fits a pattern in two different ways. This is illustrated by the next two examples. (See also the remark about the product rule above.) I have seen students flummoxed by Example ID, and Example ISO is a proof that is supposed to have flummoxed medieval geometry students.

    Example ID

    Definition: In a set with an associative binary operation and an identity element $e$, an element $y$ is the inverse of an element $x$ if

    \[xy=e\ \ \ \ \text{and}\ \ \ \ yx=e \ \ \ \ (1)\]

    In this situation, it is easy to see that $x$ has only one inverse: If $xy=e$ and $xz=e$ and $yx=e$ and $zx=e$, then \[y=ey=(zx)y=z(xy)=ze=z\]

    Theorem: ${{({{x}^{-1}})}^{-1}}=x$.

    Proof: I am given that ${{x}^{-1}}$ is the inverse of $x$, By definition, this means that

    \[x{{x}^{-1}}=e\ \ \ \text{and}\ \ \ {{x}^{-1}}x=e \ \ \ \ (2)\]

    To prove the theorem, I must show that $x$ is the inverse of ${{x}^{-1}}$. Because $x^{-1}$ has only one inverse, all we have to do is prove that

    \[{{x}^{-1}}x=e\ \ \ \text{and}\ \ \ x{{x}^{-1}}=e\ \ \ \ (3)\]  

    But (2) and (3) are equivalent! (“And” is commutative.)

    Example ISO

    This sort of double substitution occurs in geometry, too.

    Theorem: If a triangle has two equal angles, then it has two equal sides.

    Proof: In the figure, assume $\angle ABC=\angle ACB$. Then triangle $ABC$ is congruent to triangle $ACB$ since the sides $BC$ and $CB$ are equal (they are the same line segment!) and the adjoining angles are equal by hypothesis.

    The point is that although triangles $ABC$ and $ACB$ are the same triangle, and sides $BC$ and $CB$ are the same line segment, the proof involves recognizing them as geometric figures in two different ways.

    This proof (not Euclid’s origi­nal proof) is hundreds of years old and is called the pons asinorum (bridge of donkeys). It became famous as the first theorem in Euclid’s books that many medi­eval stu­dents could not under­stand. I con­jecture that the name comes from the fact that the triangle as drawn here resembles an ancient arched bridge. These days, isos­ce­les tri­angles are usually drawn taller than they are wide.

    Technical problems in carrying out pattern matching

    Parentheses

    In matching a pattern you may have to insert parentheses. For example, if you substitute $x+1$ for $a$, $2y$ for
    $b$ and $4$ for $c$ in the expression \[{{a}^{2}}+{{b}^{2}}={{c}^{2}}\] you get \[{{(x+1)}^{2}}+4{{y}^{2}}=16\]
    If you did the substitution literally without editing the expression so that it had the correct meaning, you would get \[x+{{1}^{2}}+2{{y}^{2}}={{4}^{2}}\] which is not the result of performing the substitution in the expression ${{a}^{2}}+{{b}^{2}}={{c}^{2}}$.   

    Order switching

    You can easily get confused if the patterns involve a switch in the order of the variables.

    Notation for integer division

    • For integers $m$ and $n$, the phrase “$m$ divides $n$” means there is an integer $q$ for which $n=qm$.
    • In number theory (which in spite of its name means the theory of positive integers) the vertical bar is used to denote integer division. So $3|6$ because $6=2\times 3$ ($q$ is $2$ in this case). But “$3|7$” is false because there is no integer $q$ for which $7=q\times 3$.
    • An equivalent definition of division says that $m|n$ if and only if $n/m$ is an integer. Note that $6/3=2$, an integer, but $7/3$ is not an integer.
    • Now look at those expressions:
    • “$m|n$” means that there is an integer $q$ for which $n=qm$.In these two expressions, $m$ and $n$ occur in opposite order.
    • “$m|n$” is true only if $n/m$ is an integer. Again, they are in opposite order. Another way of writing $n/m$ is $\frac{n}{m}$. When math people pronounce “$\frac{n}{m}$” they usually say, “$n$ over $m$” using the same order.
  • I taught these notation in courses for computer engineering and math majors for years. Some of the students stayed hopelessly confused through several lectures and lost points repeatedly on homework and exams by getting these symbols wrong.
  • The problem was not helped by the fact that “$|$” and “$/$” are similar but have very different syntax:

    Math notation gives you no clue which symbols are operators (used to form expressions) and which are verbs (used to form assertions).

  • A majority of the students didn’t have so much trouble with this kind of syntax. I have noticed that many people have no sense of syntax and other people have good intuitive understanding of syntax. I suspect the second type of people find learning foreign languages easy.
  • Many of the articles in the references below concern syntax.
  • References

    Creative Commons License

    This work is licensed under a Creative Commons Attribution-ShareAlike 2.5 License.


    Send to Kindle

    Algebra is a difficult foreign language

    Note: This post uses MathJax.  If you see mathematical formulas with dollar signs around them, or badly formatted formulas, try refreshing the screen. Sometimes you have to do it two or three times.

    Algebra

    In a previous post, I said that the symbolic language of mathematics is difficult to learn and that we don't teach it well. (The symbolic language includes as a subset the notation used in high school algebra, precalculus, and calculus.) I gave some examples in that post but now I want to go into more detail.  This discussion is an incomplete sketch of some aspects of the syntax of the symbolic language.  I will write one or more posts about the semantics later.

    The languages of math

    First, let's distinguish between mathematical English and the symbolic language of math. 

    • Mathematical English is a special register or jargon of English. It has not only its special vocabulary, like any jargon, but also used ordinary English words such as "If…then", "definition" and "let" in special ways. 
    • The symbolic language of math is a distinct, special-purpose written language which is not a dialect of the English language and can in fact be read by mathematicians with little knowledge of English.
      • It has its own symbols and rules that are quite different from spoken languages. 
      • Simple expressions can be pronounced, but complicated expressions may only be pointed to or referred to.
    • A mathematical article or book is typically written using mathematical English interspersed with expressions in the symbolic language of math.

    Symbolic expressions

    A symbolic noun (logicians call it a term) is an expression in the symbolic language that names a number or other mathematical object, and may carry other information as well.

    • "3" is a noun denoting the number 3.
    • "$\text{Sym}_3$" is a noun denoting the symmetric group of order 3.
    • "$2+1$" is a noun denoting the number 3.  But it contains more information than that: it describes a way of calculating 3 as a sum.
    • "$\sin^2\frac{\pi}{4}$" is a noun denoting the number $\frac{1}{2}$, and it also describes a computation that yields the number $\frac{1}{2}$.  If you understand the symbolic language and know that $\sin$ is a numerical function, you can recognize "$\sin^2\frac{\pi}{4}$" as a symbolic noun representing a number even if you don't know how to calculate it.
    • "$2+1$" and "$\sin^2\frac{\pi}{4}$" are said to be encapsulated computations.
      • The word "encapsulated" refers to the fact that to understand what the expressions mean, you must think of the computation not as a process but as an object.
      • Note that a computer program is also an object, not a process.
    • "$a+1$" and "$\sin^2\frac{\pi x}{4}$" are encapsulated computations containing variables that represent numbers. In these cases you can calculate the value of these computations if you give values to the variables.  

    symbolic statement is a symbolic expression that represents a statement that is either true or false or free, meaning that it contains variables and is true or false depending on the values assigned to the variables.

    • $\pi\gt0$ is a symbolic assertion that is true.
    • $\pi\lt0$ is a symbolic assertion that it is false.  The fact that it is false does not stop it from being a symbolic assertion.
    • $x^2-5x+4\gt0$ is an assertion that is true for $x=5$ and false for $x=1$.
    • $x^2-5x+4=0$ is an assertion that is true for $x=1$ and $x=4$ and false for all other numbers $x$.
    • $x^2+2x+1=(x+1)^2$ is an assertion that is true for all numbers $x$. 

    Properties of the symbolic language

    The constituents of a symbolic expression are symbols for numbers, variables and other mathematical objects. In a particular expression, the symbols are arranged according to conventions that must be understood by the reader. These conventions form the syntax or grammar of symbolic expressions. 

    The symbolic language has been invented piecemeal by mathematicians over the past several centuries. It is thus a natural language and like all natural languages it has irregularities and often results in ambiguous expressions. It is therefore difficult to learn and requires much practice to learn to use it well. Students learn the grammar in school and are often expected to understand it by osmosis instead of by being taught specifically.  However, it is not as difficult to learn well as a foreign language is.

    In the basic symbolic language, expressions are written as strings of symbols.

    • The symbolic language gives (sometimes ambiguous) meaning to symbols placed above or below the line of symbols, so the strings are in some sense more than one dimensional but less than two-dimensional.
    • Integral notation, limit notation, and others, are two-dimensional enough to have two or three levels of symbols. 
    • Matrices are fully two-dimensional symbols, and so are commutative diagrams.
    • I will not consider graphs (in both senses) and geometric drawings in this post because I am not sure what I want to write about them.

    Syntax of the language

    One of the basic methods of the symbolic language is the use of constructors.  These can usually be analyzed as functions or operators, but I am thinking of "constructor" as a linguistic device for producing an expression denoting a mathematical object or assertion. Ordinary languages have constructors, too; for example "-ness" makes a noun out of a verb ("good" to "goodness") and "and" forms a grouping ("men and women").

    Special symbols

    The language uses special symbols both as names of specific objects and as constructors.

    • The digits "0", "1", "2" are named by special symbols.  So are some other objects: "$\emptyset$", "$\infty$".
    • Certain verbs are represented by special symbols: "$=$", "$\lt$", "$\in$", "$\subseteq$".
    • Some constructors are infixes: "$2+3$" denotes the sum of 2 and 3 and "$2-3$" denotes the difference between them.
    • Others are placed before, after, above or even below the name of an object.  Examples: $a'$, which can mean the derivative of $a$ or the name of another variable; $n!$ denotes $n$ factorial; $a^\star$ is the dual of $a$ in some contexts; $\vec{v}$ constructs a vector whose name is "$v$".
    • Letters from other alphabets may be used as names of objects, either defined in the context of a particular article, or with more nearly global meaning such as "$\pi$" (but "$\pi$" can denote a projection, too).

    This is a lot of stuff for students to learn. Each symbol has its own rules of use (where you put it, which sort of expression you may it with, etc.)  And the meaning is often determined by context. For example $\pi x$ usually means $\pi$ multiplied by $x$, but in some books it can mean the function $\pi$ evaluated at $x$. (But this is a remark about semantics — more in another post.)

    "Systematic" notation

    • The form "$f(x)$" is systematically used to denote the value of a function $f$ at the input $x$.  But this usage has variations that confuse beginning students:
      • "$\sin\,x$" is more common than "$\sin(x)$".
      • When the function has just been named as a letter, "$f(x)$" is more common that "$fx$" but many authors do use the latter.
    • Raising a symbol after another symbol commonly denotes exponentiation: "$x^2$" denotes $x$ times $x$.  But it is used in a different meaning in the case of tensors (and elsewhere).
    • Lowering a symbol after another symbol, as in "$x_i$"  may denote an item in a sequence.  But "$f_x$" is more likely to denote a partial derivative.
    • The integral notation is quite complicated.  The expression \[\int_a^b f(x)\,dx\] has three parameters, $a$, $b$ and $f$, and a bound variable $x$ that specifies the variable used in the formula for $f$.  Students gradually learn the significance of these facts as they work with integrals. 

    Variables

    Variables have deep problems concerned with their meaning (semantics). But substitution for variables causes syntactic problems that students have difficulty with as well.

    • Substituting $4$ for $x$ in the expression $3+x$ results in $3+4$. 
    • Substituting $4$ for $x$ in the expression $3x$ results in $12$, not $34$. 
    • Substituting "$y+z$" in the expression $3x$ results in $3(y+z)$, not $3y+z$.  Some of my calculus students in preforming this substitution would write $3\,\,y+z$, using a space to separate.  The rules don't allow that, but I think it is a perfectly natural mistake. 

    Using expressions and writing about them

    • If I write "If $x$ is an odd integer, then $3+x$ is odd", then I am using $3+x$ in a sentence. It is a noun denoting an unspecified number which can be constructed in a specified way.
    • When I mention substituting $4$ for $x$ in "$3+x$", I am talking about the expression $3+x$.  I am not writing about a number, I am writing about a string of symbols.  This distinction causes students major difficulties and teacher hardly ever talk about it.
    • In the section on variables, I wrote "the expression $3+x$", which shows more explicitly that I am talking about it as an expression.
      • Note that quotes in novels don't mean you are talking about the expression inside the quotes, it means you are describing the act of a person saying something.
    • It is very common to write something like, "If I substitute $4$ for $x$ in $3x$ I get $3 \times 4=12$".  This is called a parenthetic assertion, and it is literally nonsense (it says I get an equation).
    • If I pronounce the sentence "We know that $x\gt0$" we pronounce "$x\gt0$" as "$x$ is greater than zero",  If I pronounce the sentence "For any $x\gt0$ there is $y\gt0$ for which $x\gt y$", then I pronounce the expression "$x\gt0$" as "$x$ greater than zero$",  This is an example of context-sensitive pronunciation
    • There is a lot more about parenthetic assertions and context-sensitive pronunciation in More about the languages of math.

    Conclusion

    I have described some aspects of the syntax of the symbolic language of math. Learning that syntax is difficult and requires a lot of practice. Students who manage to learn the syntax and semantics can go on to learn further math, but students who don't are forever blocked from many rewarding careers. I heard someone say at the MathFest in Madison that about 25% of all high school students never really understand algebra.  I have only taught college students, but some students (maybe 5%) who get into freshman calculus in college are weak enough in algebra that they cannot continue. 

    I am not proposing that all aspects of the syntax (or semantics) be taught explicitly.  A lot must be learned by doing algebra, where they pick up the syntax subconsciously just as they pick up lots of other behavior-information in and out of school. But teachers should explicitly understand the structure of algebra at least in some basic way so that they can be aware of the source of many of the students' problems. 

    It is likely that the widespread use of computers will allow some parts of the symbolic language of math to be replaced by other methods such as using Excel or some visual manipulation of operations as suggested in my post Mathematical and linguistic ability.  It is also likely that the symbolic language will gradually be improved to get rid of ambiguities and irregularities.  But a deliberate top-down effort to simplify notation will not succeed. Such things rarely succeed.

    References

     

     

    Send to Kindle

    Skills needed for learning languages and math

    Learning a language involves a variety of skills, and so does learning math. Some skills are apparently needed for both, but others are distinct.

    Learning languages and learning math

    Some years ago I sat in on a second year college Spanish class. Most of the other students were ages 18-24. The students showed a wide spectrum of ability.

    • Some were quite fluent and conversed easily. Others struggled to put a sentence together.
    • Some had trouble with basic grammar, for example adjective-noun agreement (number and gender). I would not have thought second year students would do that. Some also had trouble with verbs. Spanish verbs are generally difficult, but second year students shouldn’t have trouble with using “canta” with singular subjects and “cantan” with plural ones.
    • Some had trouble reading aloud, stumbling over pronunciation, such putting the accent in the right place in real time and pronouncing some letters correctly (“ll”, “e”, intervocalic “s”). The rules for accent and pronouncing letters are very easy in Spanish, and I was surprised that second year students would have difficulty with them. But the speech of most of them sounded good to me.

    I can read Spanish pretty well, but have had very little practice speaking or writing it. I comprehend some of what they say on Univision (soap operas are particularly easy, but I still miss more than half of it), but then I am hard of hearing. I used to have a reasonable ability to speak and understand street German; judging from experience I think it would come back rapidly if we went to live in a German-speaking city again. I can easily read math papers written in Spanish or in German, but I couldn’t come close to giving a math lecture in either language.

    Some find learning rules of pronunciation that are different from English very hard, like the Spanish students I mentioned above. I know that some people can’t keep “ei” and “ie” straight in German, and some Russian students find it hard to get used to the Cyrillic alphabet. I find that part of language learning easy. I also find learning grammar and using it in real time fairly easy. I have more difficulty remembering vocabulary.

    Learning the new sounds of a language is an entirely different problem from learning the rules of pronunciation.

    Mathematical ability

    Some difficulties that students have with the symbolic language of math [1] are probably the same kind of difficulties that language students have with learning another language.

    When I have taught elementary logic, I usually have a scattering of students who can’t keep the symbols {\land} and {\lor} separate. (See Note [a].) Some even have the same trouble with intersection and union of sets. This is sort of like differentiating “ie” and “ei” in German, except that the latter distinction runs into cognitive dissonance [2] caused by the usual English pronunciation.

    Of course, both language students and math students have immense problems with cognitive dissonance in areas other than symbol-learning. For example, many technical words in math have meanings different from ordinary English usage, such as “if”, “group”, and “category”. Language students have difficulties with “false friends” such as “Gift”, which is the German word for “poison”, and very common words such as prepositions, which can have several different translations into English depending on context — and many prepositions in other European languages look like English prepositions. (Note [b]).

    On the other hand, some types of mathematical learning seem to involve problems language students don’t run into.

    Substitution, for example, appears to me to cause conceptual difficulties that are not like anything in learning language. But I would like to hear examples to the contrary.

    If {f(x) = x^2+3x+1}, then {f(x+1)= (x+1)^2+3(x+1)+1}. Is there anything like this in natural languages? And simplifying this to {x^4+5 x^2+5} is not like anything in natural language either — is it?

    Is there anything in learning natural languages that is like thinking of an element of a set? Or like the two-level quantification involved in understanding the definition of continuity?

    Is there anything in learning math that involves the same kind of difficulty as learning to pronounce a new sound in another language? (Well, making a speech sound involves moving parts of your mouth in three dimensions, and some people find visualizing 3D shapes difficult. But that seems like a stretch to me).

    A proposal for investigation

    Students show a wide variety of conceptual skills. Some skills seem to be required both in learning mathematics and in learning a foreign language. Others are different. Also, there is a difference between learning school math and learning abstract math at the college level (Note [c]).

    TOPIC FOR RESEARCH

    • Identify the types of concept formation that learning a foreign language and learning math have in common.
    • Determine if “being good at languages” and “being good at mathematics” are correlated at the high school level.
    • Ditto for college-level abstract math.

    Undoubtedly math teachers and language teachers have written about certain specific issues of the sort I have discussed, but I think we need a systematic comparative investigation of skills involved in the tasks of learning languages and learning math.

    I have made proposals for research concerning various other questions with math ed, particularly in connection with linguistics. I will install a new topic “Proposals for research” in my “List of categories” (on the left side of the screen under “Recent posts”) and mark this and other articles that contain such proposals.

    Notes

    [a]. That is why, in the mathematical reasoning sections of abmath, for example [3], I use the usual English wordings of mathematical assertions instead of systematically using logical symbolism. For many students, introducing symbols and then immediately using them to talk about the subtleties of meaning and usage puts a difficult burden on some of the students. (I do define the symbols in asides).

    This may not be the right thing to do. If a student finds it hard to learn to use symbols easily and fluently, should they be studying math?

    [b]. I once knew a teenage German who spoke pretty good English, but he could not bear to use the English possessive case. That’s because German young people (assuming I understand this correctly) hate to say things like “Das Auto meines Vaters” and instead say “Das Auto von meinem Vater”. Unfortunately this resulted in his saying in English “The car from my father”, “The girlfriend from my brother” and so on…

    [c]. I have been concerned primarily with understanding the difficulties students have when starting to study abstract math after they have had calculus. I have seen many students ace calculus and flunk abstract algebra or logic. There is a wall to fall off of there. The only organization I know of concerned with this is RUME, although it is involved with college calculus as well as what comes after.

    References

    [1] The symbolic language of math.

    [2] Cognitive dissonance.

    [3] Conditional assertions.

    Send to Kindle

    Templates in mathematical practice

    This post is a first pass at what will eventually be a section of abstractmath.org. It’s time to get back to abstractmath; I have been neglecting it for a couple of years.

    What I say here is based mainly on my many years of teaching discrete mathematics at Case Western Reserve University in Cleveland and more recently at Metro State University in Saint Paul.

    Beginning abstract math

    College students typically get into abstract math at the beginning in such courses as linear algebra, discrete math and abstract algebra. Certain problems that come up in those early courses can be grouped together under the notion of (what I call) applying templates [note 0]. These are not the problems people usually think about concerning beginners in abstract math, of which the following is an incomplete list:

    The students’ problems discussed here concern understanding what a template is and how to apply it.

    Templates can be formulas, rules of inference, or mini-programs. I’ll talk about three examples here.

    The template for quadratic equations

    The solution of a real quadratic equation of the form {ax^2+bx+c=0} is given by the formula

    \displaystyle  x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}

    This is a template for finding the roots of the equations. It has subtleties.

    For example, the numerator is symmetric in {a} and {c} but the denominator isn’t. So sometimes I try to trick my students (warning them ahead of time that that’s what I’m trying to do) by asking for a formula for the solution of the equation {a+bx+cx^2=0}. The answer is

    \displaystyle x=\frac{-b\pm\sqrt{b^2-4ac}}{2c}

    I start writing it on the board, asking them to tell me what comes next. When we get to the denominator, often someone says “{2a}”.

    The template is telling you that the denominator is 2 times the coefficient of the square term. It is not telling you it is “{a}”. Using a template (in the sense I mean here) requires pattern matching, but in this particular example, the quadratic template has a shallow incorrect matching and a deeper correct matching. In detail, the shallow matching says “match the letters” and the deep matching says “match the position of the letters”.

    Most of the time the quadratic being matched has particular numbers instead of the same letters that the template has, so the trap I just described seldom occurs. But this makes me want to try a variation of the trick: Find the solution of {3+5x+2x^2=0}. Would some students match the textual position (getting {a=3}) instead of the functional position (getting {a=5})? [Note [0]). If they did they would get the solutions {(-1,-\frac{2}{3})} instead of {(-1,-\frac{3}{2})}.

    Substituting in algebraic expressions have other traps, too. What sorts of mistakes would students have solving {3x^2+b^2x-5=0}?

    Most students on the verge of abstract math don’t make mistakes with the quadratic formula that I have described. The thing about abstract math is that it uses more sophisticated templates

    • subject to conditions
    • with variations
    • with extra levels of abstraction

    The template for proof by induction

    This template gives a method of proof of a statement of the form {\forall{n}\mathcal{P}(n)}, where {\mathcal{P}} is a predicate (presumably containing {n} as a variable) and {n} varies over positive integers. The template says:

    Goal: Prove {\forall{n}\mathcal{P}(n)}.

    Method:

    • Prove {\mathcal{P}(1)}
    • For an arbitrary integer {n>1}, assume {\mathcal{P}(n)} and deduce {\mathcal{P}(n+1)}.

    For example, to prove {\forall n (2^n+1\geq n^2)} using the template, you have to prove that {2^2+1\geq  1^1}, and that for any {n>1}, if {2^n+1\geq n^2}, then {2^{n+1}+1\geq  (n+1)^2}. You come up with the need to prove these statements by substituting into the template. This template has several problems that the quadratic formula does not have.

    Variables of different types

    The variable {n} is of type integer and the variable {\mathcal{P}} is of type predicate [note 0]. Having to deal with several types of variables comes up already in multivariable calculus (vectors vs. numbers, cross product vs. numerical product, etc) and they multiply like rabbits in beginning abstract math classes. Students sometimes write things like “Let {\mathcal{P}=n+1}”. Multiple types is a big problem that math ed people don’t seem to discuss much (correct me if I am wrong).

    Free and bound

    The variable {n} occurs as a bound variable in the Goal and a free variable in the Method. This happens in this case because the induction step in the Method originates as the requirement to prove {\forall  n(\mathcal{P}(n)\rightarrow\mathcal{P}(n+1))}, but as I have presented it (which seems to be customary) I have translated this into a requirement based on modus ponens. This causes students problems, if they notice it. (“You are assuming what you want to prove!”) Many of them apparently go ahead and produce competent proofs without noticing the dual role of {n}. I say more power to them. I think.

    The template has variations

    • You can start the induction at other places.
    • You may have to have two starting points and a double induction hypothesis (for {n-1} and {n}). In fact, you will have to have two starting points, because it seems to be a Fundamental Law of Discrete Math Teaching that you have to talk about the Fibonacci function ad nauseam.
    • Then there is strong induction.

    It’s like you can go to the store and buy one template for quadratic equations, but you have to by a package of templates for induction, like highway engineers used to buy packages of plastic French curves to draw highway curves without discontinuous curvature.

    The template for row reduction

    I am running out of time and won’t go into as much detail on this one. Row reduction is an algorithm. If you write it up as a proper computer program there have to be all sorts of if-thens depending on what you are doing it for. For example if want solutions to the simultaneous equations

    2x+4y+z = 1
    x+2y = 0
    x+2y+4z = 5

    you must row reduce the matrix

    2 4 1 1
    1 2 0 0
    1 2 4 5

    (I haven’t yet figured out how to wrap this in parentheses) which gives you

    1 2 0 0
    0 0 1 0
    0 0 0 1

    This introduces another problem with templates: They come with conditions. In this case the condition is “a row of three 0s followed by a nonzero number means the equations have no solutions”. (There is another condition when there is a row of all 0’s.)

    It is very easy for the new student to get the calculation right but to never sit back and see what they have — which conditions apply or whatever.

    When you do math you have to repeatedly lean in and focus on the details and then lean back and see the Big Picture. This is something that has to be learned.

    What to do, what to do

    I have recently experimented with being explicit about templates, in particular going through examples of the use of a template after explicitly stating the template. It is too early to say how successful this is. But I want to point out that even though it might not help to be explicit with students about templates, the analysis in this post of a phenomenon that occurs in beginning abstract math courses

    • may still be accurate (or not), and
    • may help teachers teach such things if they are aware of the phenomenon, even if the students are not.

    Notes

    1. Many years ago, I heard someone use the word “template” in the way I am using it now, but I don’t recollect who it was. Applied mathematicians sometimes use it with a meaning similar to mine to refer to soft algorithms–recipes for computation that are not formal algorithms but close enough to be easily translated into a sufficiently high level computer language.
    2. In the formula {ax^2+bx+c}, the “{a}” has the first textual position but the functional position as the coefficient of the quadratic term. This name “functional position” has nothing to do with functions. Can someone suggest a different name that won’t confuse people?
    3. I am using “variable” the way logicians do. Mathematicians would not normally refer to “{\mathcal{P}}” as a variable.
    4. I didn’t say anything about how templates can involve extra layers of abstract.  That will have to wait.
    Send to Kindle