Tag Archives: semigroup

Dysfunctions in doing math I

I am in the middle of revising the article in abstractmath.org on dysfunctional attitudes and behaviors in doing math. Here are three of the sections I have finished.

Misuse of analogy

When William Rowan Hamilton was trying to understand the new type of number called quaternions (MW, Wik) that he invented, he assumed by analogy that like other numbers, quaternion multiplication was commutative. It was a major revelation to him that they were not commutative.

Analogy may suggest new theorems or ways of doing things. But it is fallible. What happens particularly often in abstract math is applying a rule to a situation where it is not appropriate. This is an easy trap to fall into when the notation in two different cases has the same form; that is an example of formal analogy.

Matrix multiplication

Matrix multiplication is not commutative

If $r$ and $s$ are real numbers then the products $rs$ and $sr$ are always the same number. In other words, multiplication of real numbers is commutative : $rs = sr$ for all real numbers $r$ and $s$.

The product of two matrices $M $and $N$ is written $MN$, just as for numbers. But matrix multiplication is not commutative. For example,
\[\left(
\begin{array}{cc}
1 & 2 \\
3 & 4\\
\end{array}
\right)
\left(
\begin{array}{cc}
3 & 1 \\
3 &2\\
\end{array}
\right)
=
\left(
\begin{array}{cc}
9 & 5\\
21 & 11 \\
\end{array}
\right)\]
but
\[\left(
\begin{array}{cc}
3 & 1 \\
3 & 2\\
\end{array}
\right)
\left(\begin{array}{cc}
1 & 2 \\
3 & 4\\
\end{array}
\right)
=
\left(
\begin{array}{cc}
6 & 10\\
91 & 14 \\
\end{array}
\right)\]
Because $rs = sr$ for numbers, the formal similarity of the notation suggests $MN$ = $NM$, which is wrong.

This means you can’t blindly manipulate $MNM$ to become $M^2N$. More generally, a law such as $(MN)^n=M^nN^n$ is not correct when $M$ and $N$ are matrices.


You must understand the meanings
of the symbols you manipulate.

The product of two nonzero matrices can be 0

If the product of two numbers is 0, then one or both of the numbers is zero. But that is not true for matrix multiplication:
\[\left(
\begin{array}{cc}
-2 & 2 \\
-1 & 1\\
\end{array}
\right)
\left(
\begin{array}{cc}
1 & 1 \\
1 &1\\
\end{array}
\right)
=
\left(
\begin{array}{cc}
0 &0\\
0 & 0 \\
\end{array}
\right)\]

Canceling sine

  • Beginning calculus students have already learned algebra.
  • They have learned that an expression such as $xy$ means $x$ times $y$.
  • They have learned to cancel like terms in a quotient, so that for example \[\frac{3x}{3y}=\frac{x}{y}\]
  • They have learned to write the value of a function $f$ at the input $x$ by $f(x)$.
  • They have seen people write $\sin x$ instead of $\sin(x)$ but have never really thought about it.
  • So they write \[\frac{\sin x}{\sin y}=\frac{x}{y}\]

This happens fairly often in freshman calculus classes. But you wouldn’t do that, would you?

Boundary values of definitions

Definitions are usually inclusive

Definitions of math concepts usually include the special cases they generalize.

Examples

  • A square is a special case of rectangle. As far as I know texts that define “rectangle” include squares in the definition. Thus a square is a rectangle.
  • A straight line is a curve.
  • A group is a semigroup.
  • An integer is a real number. (But not always in computing languages — see here.)

But not always

  • The axioms of a field include a bunch of axioms that a one-element set satisfies, plus a special axiom that does nothing but exclude the one-element set. So a field has to have at least two elements, and that fact does not follow from the other axioms.
  • Boolean algebras are usually defined that way, too, but not always. MathWorld gives several definitions of Boolean algebra that disagree on this point.

When boundary values are not special cases

Definitions may or may not include other types of boundary values.

Examples

  • If $S$ is a set, it is a subset of itself. The empty set is also a subset of $S$.
  • Similarly the divisors of $6$ are $-6$, $-3$, $-2$, $-1$, $1$, $2$, $3$ and $6$, not just $2$ and $3$ and not just $1$, $2$, $3$ and $6$ (there are two different boundaries here).

But …

  • The positive real numbers include everything bigger than $0$, but not $0$. ( Note).

Blunders

A definition that includes such special cases may be called inclusive; otherwise it is exclusive. People new to abstract math very commonly use words defined inclusively as if their definition was exclusive.

  • They say things such as “That’s not a rectangle, it is a square!” and “Is that a group or a semigroup?”
  • They object if you say “Consider the complex number $\pi $.”

This appears to be natural linguistic behavior. Even so, math is picky-picky: a square is a rectangle, a group is a semigroup and $\pi$ is a complex number (of course, it is also a real number).

Co-intimidator

  • You attend a math lecture and the speaker starts talking about things you never heard of.
  • Your fellow students babble at you about manifolds and tensors and you thought they were car parts and lamps.
  • You suspect your professor is deliberately talking over your head to put you down.
  • You suspect your friends are trying to make you believe they are much smarter than you are.
  • You suspect your friends are smarter than you are.

There are two possibilities:

  • They are not trying to intimidate you (most common).
  • They are deliberately setting out to intimidate you with their arcane knowledge so you will know what a worm you are. (There are people like that.)

Another possibility, which can overlap with the two above, is:

  • You expect to be intimidated. You may be what might be called a co-intimidator, Similar to the way someone who is codependent wants some other person to be dependent on them. (This is not like the “co” in category theory: “product” and “coproduct” have a symmetric relationship with each other, but the co-intimidator relation is asymmetric.)

There are many ways to get around being intimidated.

  • Ask “What the heck is a manifold?”
  • (In a lecture where it might be imprudent or impractical to ask) Write down what they say, then later ask a friend or look it up.
  • Most teachers like to be asked to explain something. Yes, I know some professors repeatedly put down people. Change sections! If you can’t, live with it! Not knowing something says nothing bad about you.

And remember:


If you don’t know something
probably many other students don’t know it either.

Send to Kindle

Naming mathematical objects

Commonword names confuse

Many technical words and phrases in math are ordinary English words ("commonwords") that are assigned a different and precisely defined mathematical meaning.  

  • Group  This sounds to the "layman" as if it ought to mean the same things as "set".  You get no clue from the name that it involves a binary operation with certain properties.  
  • Formula  In some texts on logic, a formula is a precisely defined expression that becomes a true-or-false sentence (in the semantics) when all its variables are instantiated.  So $(\forall x)(x>0)$ is a formula.  The word "formula" in ordinary English makes you think of things like "$\textrm{H}_2\textrm{O}$", which has no semantics that makes it true or false — it is a symbolic expression for a name.
  • Simple group This has a technical meaning: a group with no nontrivial normal subgroup.  The Monster Group is "simple".  Yes, the technical meaning is motivated by the usual concept of "simple", but to say the Monster Group is simple causes cognitive dissonance.

Beginning students come with the (generally subconscious) expectation that they will pick up clues about the meanings of words from connotations they are already familiar with, plus things the teacher says using those words.  They think in terms of refining an understanding they already have.  This is more or less what happens in most non-math classes.  They need to be taught what definition means to a mathematician.

Names that don't confuse but may intimidate

Other technical names in math don't cause the problems that commonwords cause.

Named after somebody The phrase "Hausdorff space" leads a math student to understand that it has a technical meaning.  They may not even know it is named after a person, but it screams "geek word" and "you don't know what it means".  That is a signal that you can find out what it means.  You don't assume you know its meaning. 

New made-up words  Words such as "affine", "gerbe"  and "logarithm" are made up of words from other languages and don't have an ordinary English meaning.  Acronyms such as "QED", "RSA" and "FOIL" don't occur often.  I don't know of any math objects other than "RSA algorithm" that have an acronymic name.  (No doubt I will think of one the minute I click the Publish button.)  Whole-cloth words such as "googol" are also rare.  All these sorts of words would be good to name new things since they do not fool the readers into thinking they know what the words mean.

Both types of words avoid fooling the student into thinking they know what the words mean, but some students are intimidated by the use of words they haven't seen before.  They seem to come to class ready to be snowed.  A minority of my students over my 35 years of teaching were like that, but that attitude was a real problem for them.

Audience

You can write for several different audiences.

Math fans (non-mathematicians who are interested in math and read books about it occasionally) In my posts Explaining higher math to beginners and in Renaming technical conceptsI wrote about several books aimed at explaining some fairly deep math to interested people who are not mathematicians.  They renamed some things. For example, Mark Ronan in Symmetry and the Monster used the phrase "atom" for "simple group" presumably to get around the cognitive dissonance.  There are other examples in my posts.  

Math newbies  (math majors and other students who want to understand some aspect of mathematics).  These are the people abstractmath.org is aimed at. For such an audience you generally don't want to rename mathematical objects. In fact, you need to give them a glossary to explain the words and phrases used by people in the subject area.   

Postsecondary math students These people, especially the math majors, have many tasks:

  • Gain an intuitive understanding of the subject matter.
  • Understand in practice the logical role of definitions.
  • Learn how to come up with proofs.
  • Understand the ins and outs of mathematical English, particularly the presence of ordinary English words with technical definitions.
  • Understand and master the appropriate parts of the symbolic language of math — not just what the symbols mean but how to tell a statement from a symbolic name.

It is appropriate for books for math fans and math newbies to try to give an understanding of concepts without necessary proving theorems.  That is the aim of much of my work, which has more an emphasis on newbies than on fans. But math majors need as well the traditional emphasis on theorem and proof and clear correct explanations.

Lately, books such as Visual Group Theory have addressed beginning math majors, trying for much more effective ways to help the students develop good intuition, as well as getting into proofs and rigor. Visual Group Theory uses standard terminology.  You can contrast it with Symmetry and the Monster and The Mystery of the Prime Numbers (read the excellent reviews on Amazon) which are clearly aimed at math fans and use nonstandard terminology.  

Terminology for algebraic structures

I have been thinking about the section of Abstracting Algebra on binary operations.  Notice this terminology:

boptable

The "standard names" are those in Wikipedia.  They give little clue to the meaning, but at least most of them, except "magma" and "group", sound technical, cluing the reader in to the fact that they'd better learn the definition.

I came up with the names in the right column in an attempt to make some sense out of them.  The design is somewhat like the names of some chemical compounds.  This would be appropriate for a text aimed at math fans, but for them you probably wouldn't want to get into such an exhaustive list.

I wrote various pieces meant to be part of Abstracting Algebra using the terminology on the right, but thought better of it. I realized that I have been vacillating between thinking of AbAl as for math fans and thinking of it as for newbies. I guess I am plunking for newbies.

I will call groups groups, but for the other structures I will use the phrases in the middle column.  Since the book is for newbies I will include a table like the one above.  I also expect to use tree notation as I did in Visual Algebra II, and other graphical devices and interactive diagrams.

Magmas

In the sixties magmas were called groupoids or monoids, both of which now mean something else.  I was really irritated when the word "magma" started showing up all over Wikipedia. It was the name given by Bourbaki, but it is a bad name because it means something else that is irrelevant.  A magma is just any binary operation. Why not just call it that?  

Well, I will tell you why, based on my experience in Ancient Times (the sixties and seventies) in math. (I started as an assistant professor at Western Reserve University in 1965). In those days people made a distinction between a binary operation and a "set with a binary operation on it".  Nowadays, the concept of function carries with it an implied domain and codomain.  So a binary operation is a function $m:S\times S\to S$.  Thinking of a binary operation this way was just beginning to appear in the common mathematical culture in the late 60's, and at least one person remarked to me: "I really like this new idea of thinking of 'plus' and 'times' as functions."  I was startled and thought (but did not say), "Well of course it is a function".  But then, in the late sixties I was being indoctrinated/perverted into category theory by the likes of John Isbell and Peter Hilton, both of whom were briefly at Case Western Reserve University.  (Also Paul Dedecker, who gave me a glimpse of Grothendieck's ideas).

Now, the idea that a binary operation is a function comes with the fact that it has a domain and a codomain, and specifically that the domain is the Cartesian square of the codomain.  People who didn't think that a binary operation was a function had to introduce the idea of the universe (universal algebraists) or the underlying set (category theorists): you had to specify it separately and introduce terminology such as $(S,\times)$ to denote the structure.   Wikipedia still does it mostly this way, and I am not about to start a revolution to get it to change its ways.

Groups

In the olden days, people thought of groups in this way:

  • A group is a set $G$ with a binary operation denoted by juxtaposition that is closed on $G$, meaning that if $a$ and $b$ are any elements of $G$, then $ab$ is in $G$.
  • The operation is associative, meaning that if $a,\ b,\ c\in G$, then $(ab)c=a(bc)$.
  • The operation has a unity element, meaning an element $e$ for which for any element $a\in G$, $ae=ea=a$.
  • For each element $a\in G$, there is an element $b$ for which $ab=ba=e$.

This is a better way to describe a group:

  • A group consist of a nullary operation e, a unary operation inv,  and a binary operation denoted by juxtaposition, all with the same codomain $G$. (A nullary operation is a map from a singleton set to a set and a unary operation is a map from a set to itself.)
  • The value of e is denoted by $e$ and the value of inv$(a)$ is denoted by $a^{-1}$.
  • These operations are subject to the following equations, true for all $a,\ b,\ c\in G$:

     

    • $ae=ea=a$.
    • $aa^{-1}=a^{-1}a=e$.
    • $(ab)c=a(bc)$.

This definition makes it clear that a group is a structure consisting of a set and three operations whose axioms are all equations.  It was formulated by people in universal algebra but you still see the older form in texts.

The old form is not wrong, it is merely inelegant.  With the old form, you have to prove the unity and inverses are unique before you can introduce notation, and more important, by making it clear that groups satisfy equational logic you get a lot of theorems for free: you construct products on the cartesian power of the underlying set, quotients by congruence relations, and other things. (Of course, in AbAl those theorem will be stated later than when groups are defined because the book is for newbies and you want lots of examples before theorems.)

References

  1. Three kinds of mathematical thinkers (G&G post)
  2. Technical meanings clash with everyday meanings (G&G post)
  3. Commonword names for technical concepts (G&G post)
  4. Renaming technical concepts (G&G post)
  5. Explaining higher math to beginners (G&G post)
  6. Visual Algebra II (G&G post)
  7. Monads for high school II: Lists (G&G post)
  8. The mystery of the prime numbers: a review (G&G post)
  9. Hersh, R. (1997a), "Math lingo vs. plain English: Double entendre". American Mathematical Monthly, volume 104, pages 48–51.
  10. Names (in abmath)
  11. Cognitive dissonance (in abmath)
Send to Kindle