Tag Archives: rigorous

Images and metaphors in math

About this post

This post is the new revision of the chapter on Images and Metaphors in abstractmath.org.

Images and metaphors in math

In this chapter, I say something about mental represen­tations (metaphors and images) in general, and provide examples of how metaphors and images help us understand math – and how they can confuse us.

Pay special attention to the section called two levels!  The distinction made there is vital but is often not made explicit.

Besides mental represen­tations, there are other kinds of represen­tations used in math, discussed in the chapter on represen­tations and models.

Mathe­matics is the tinkertoy of metaphor. –Ellis D. Cooper

Images and metaphors in general

We think and talk about our experiences of the world in terms of images and metaphors that are ultimately derived from immediate physical experience.  They are mental represen­tations of our experiences.

See Thinking about thought.

Examples

Images

We know what a pyramid looks like.  But when we refer to the government’s food pyramid we are not talking about actual food piled up to make a pyramid.  We are talking about a visual image of the pyramid.    

Metaphors

We know by direct physical experience what it means to be warm or cold.  We use these words as metaphors
in many ways: 

  • We refer to a person as having a warm or cold personality.  This has nothing to do with their body temperature.
  • When someone is on a treasure hunt we may tell them they are “getting warm”, even if they are hunting outside in the snow.

Children don’t always sort meta­phors out correctly. Father: “We are all going to fly to Saint Paul to see your cousin Petunia.” Child: “But Dad, I don’t know how to fly!”

Other terminology

  • My use of the word “image” means mental image. In the study of literature, the word “image” is used in a more general way, to refer to an expression that evokes a mental image..
  • I use “metaphor” in the sense of conceptual metaphor. The word metaphor in literary studies is related to my use but is defined in terms of how it is expressed.
  • The metaphors mentioned above involving “warm” and “cold”
    evoke a sensory experience, and so could be called an image as well. 
  • In math education, the phrase concept image means the mental structure associated with a concept, so there may be no direct connection with sensory experience.  
  • In abstractmath.org, I use the phrase metaphors and images to talk about all our mental represen­tations, without trying for fine distinctions.

Mental represen­tations are imperfect

One basic fact about metaphors and images is that they apply only to certain aspects of the situation.

  • When someone is getting physically warm we would expect them to start sweating.
  • But if they are getting warm in a treasure hunt we don’t expect them to start sweating. 
  • We don’t expect the food pyramid to have a pharaoh buried underneath it, either.

Our brains handle these aspects of mental represen­tations easily and usually without our being conscious of them.  They are one of the primary ways we understand the world.

Images and metaphors in math

Half this game is 90% mental. –Yogi Berra

Types of represen­tations

Mathe­maticians who work with a particular kind of mathe­matical object
have mental represen­tations of that type of object that help them
understand it.  These mental represen­tations come in many forms.  Most of them fit into one of the types below, but the list shouldn’t be taken too seriously: Some represen­tations fit more that of these types, and some may not fit into any of them except awkwardly.

  • Visual
  • Notation
  • Kinetic
  • Process
  • Object

All mental represen­tations are conceptual metaphors. Metaphors are treated in detail in this chapter and in the chapter on images and metaphors for functions.  See also literalism and Proofs without dry bones on Gyre&Gimble.

Below I list some examples. Many of them refer to the arch function, the function defined by $h(t)=25-{{(t-5)}^{2}}$.

Visual image

Geometric figures



The arch function

  • You can picture the arch function in terms of its graph, which is a parabola.     This visualization suggests that the function has a single maximum point that appears to occur at $t=5$. That is an example of how metaphors can suggest (but not prove) theorems.
  • You can think of the arch function
    more physically, as like the Gateway Arch. This metaphor is suggested by the graph.

Interior of a shape

  • The interior of a closed curve or a sphere is called that because it is like the interior in the everyday sense of a bucket or a house.
  • Sometimes, the interior can be described using analytic geometry. For example, the interior of the circle $x^2+y^2=1$ is the set of points \[\{(x,y)|x^2+y^2\lt1\}\]
  • But the “interior” metaphor is imperfect: The boundary of a real-life container such as a bucket has thickness, in contrast to the boundary of a closed curve or a sphere. 
  • This observation illustrates my description of a metaphor as identifying part of one situation with part of another. One aspect is emphasized; another aspect, where they may differ, is ignored.

Real number line

  • You may think of the real
    numbers
    as lying along a straight line (the real line) that extends infinitely far in both directions.  This is both visual and a metaphor (a real number “is” a place on the real line).
  • This metaphor is imperfect because you can’t draw the whole real line, but only part of it. But you can’t draw the whole graph of the curve $y=25-(t-5)^2$, either.

Continuous functions

No gaps

“Continuous functions don’t have gaps in the graph”.    This is a visual image, and it is usually OK.

  • But consider the curve defined by $y=25-(t-5)^2$ for every real $x$ except $x=1$. It is not defined at $x=1$ (and so the function is discontinuous there) but its graph looks exactly like the graph in the figure above because no matter how much you magnify it you can’t see the gap.
  • This is a typi­cal math example that teachers make up to raise your consciousness.

  • So is there a gap or not?
No lifting

“Continuous functions can be drawn without lifting the chalk.” This is true in most familiar cases (provided you draw the graph only on a finite interval). But consider the graph of the function defined by $f(0)=0$ and \[f(t)=t\sin\frac{1}{t}\ \ \ \ \ \ \ \ \ \ (0\lt t\lt 0.16)\]
(see Split Definition). This curve is continuous and is infinitely long even though it is defined on a finite interval, so you can’t draw it with a chalk at all, picking up the chalk or not. Note that it has no gaps.

Keeping concepts separate by using mental “space”

I personally use visual images to remember relationships between abstract objects, as well.  For example, if I think of three groups, two of which are isomorphic (for example $\mathbb{Z}_{3}$ and $\text{Alt}_3$), I picture them as in three different places in my head with a connection between the two isomorphic ones.

Notation

Here I give some examples of thinking of math objects in terms of the notation used to name them. There is much more about notation as mathe­matical represen­tation in these sections of abmath:

Notation is both something you visualize in your head and also a physical represen­tation of the object.  In fact notation can also be thought of as a mathe­matical object in itself (common in mathe­matical logic and in theoretical computing science.)   If you think about what notation “really is” a lot,  you can easily get a headache…

Symbols

  • When I think of the square root of $2$, I visualize the symbol “$\sqrt{2}$”. That is both a typographical object and a mathe­matically defined symbolic represen­tation of the square root of $2$.
  • Another symbolic represen­tation of the square root of $2$ is “$2^{1/2}$”. I personally don’t visualize that when I think of the square root of $2$, but there is nothing wrong with visualizing it that way.
  • What is dangerous is thinking that the square root of $2$ is the symbol “$\sqrt{2}$” (or “$2^{1/2}$” for that matter). The square root of $2$ is an abstract mathe­matical object given by a precise mathe­matical definition.
  • One precise defi­nition of the square root of $2$ is “the positive real number $x$ for which $x^2=2$”. Another definition is that $\sqrt{2}=\frac{1}{2}\log2$.

Integers

  • If I mention the number “two thousand, six hundred forty six” you may visualize it as “$2646$”. That is its decimal represen­tation.
  • But $2646$ also has a prime factorization, namely $2\times3^3\times7^2$.
  • It is wrong to think of this number as being the notation “$2646$”. Different notations have different values, and there is no mathe­matical reason to make “$2646$” the “genuine” represen­tation. See represen­tations and Models.
  • For example, the prime factor­ization of $2646$ tells you imme­diately that it is divisible by $49$.

When I was in high school in the 1950’s, I was taught that it was incorrect to say “two thousand, six hundred and forty six”. Being naturally rebellious I used that extra “and” in the early 1960’s in dictating some number in a telegraph mes­sage. The Western Union operator corrected me. Of course, the “and” added to the cost. (In case you are wondering, I was in the middle of a postal Diplomacy game in Graustark.)

Formulas

Set notation

You can think of the set containing $1$, $3$ and $5$ and nothing else as represented by its common list notation $\{1, 3, 5\}$.  But remember that $\{5, 1,3\}$ is another notation for the same set. In other words the list notation has irrelevant features – the order in which the elements are listed in this case.


Kinetic

Shoot a ball straight up

  • The arch function could model the height over time of a physical object, perhaps a ball shot vertically upwards on a planet with no atmosphere.
  • The ball starts upward at time $t=0$ at elevation $0$, reaches an elevation of (for example) $16$ units at time $t=2$, and lands at $t=10$.
  • The parabola is not the path of the ball. The ball goes up and down along the $x$-axis. A point on the parabola shows it locaion on the $x$ axis at time $t$.
  • When you think about this event, you may imagine a physical event continuing over time, not just as a picture but as a feeling of going up and down.
  • This feeling of the ball going up and down is created in your mind presumably using mirror neuron. It is connected in your mind by a physical connection to the understanding of the function that has been created as connections among some of your neurons.
  • Although $h(t)$ models the height of the ball, it is not the same thing as the height of the ball.  A mathe­matical object may have a relationship in our mind to physical processes or situations, but it is distinct from them.

Remarks

  1. This example involves a picture (graph of a function).  According to this report, kinetic
    understanding can also help with learning math that does not involve pictures. 
    For example, when I think of evaluating the function ${{x}^{2}}+1$ at 3, I visualize
    3 moving into the x slot and then the formula $9^2+1$ transforming
    itself into $10$. (Not all mathematicians visualize it this way.)
  2. I make the point of emphasizing the physical existence in your brain of kinetic feelings (and all other metaphors and images) to make it clear that this whole section on images and metaphors is about objects that have a physical existence; they are not abstract ideals in some imaginary ideal space not in our world. See Thinking about thought.

I remember visualizing algebra I this way even before I had ever heard of the Transformers.

Process 

It is common to think of a function as a process: you put in a number (or other object) and the process produces another number or other object. There are examples in Images and metaphors for functions.

Long division

Let’s divide $66$ by $7$ using long division. The process consists of writing down the decimal places one by one.

  1. You guess at or count on your fingers to find the largest integer $n$ for which $7n\lt66$. That integer is $9$.
  2. Write down $9.$ ($9$ followed by a decimal point).
  3. $66-9\times7=3$, so find the largest integer $n$ for which $7n\lt3\times10$, which is $4$.
  4. Adjoin $4$ to your answer, getting $9.4$
  5. $3\times10-7\times4=2$, so find the largest integer $n$ for which $7n\lt2\times10$, which is $2$.
  6. Adjoin $2$ to your answer, getting $9.42$.
  7. $2\times10-7\times2=6$, so find the largest integer for which $7n\lt6\times10$, which is $8$.
  8. Adjoin $8$ to your answer, getting $9.428$.
  9. $6\times10-7\times8=4$, so find the largest integer for which $7n\lt4\times10$, which is $5$.
  10. Adjoin $5$ to your answer, getting $9.4285$.

You can continue with the procedure to get as many decimal places as you wish of $\frac{66}{7}$.

Remark

The sequence of actions just listed is quite difficult to follow. What is difficult is not understanding what they say to do, but where did they get the numbers? So do this exercise!


Exercise worth doing:

Check that the procedure above is exactly what you do to divide $66$ by $7$ by the usual method taught in grammar school:




Remarks
  • The long division process produces as many decimal places as you have stamina for. It is likely for most readers that when you do long division by hand you have done it so much that you know what to do next without having to consult a list of instructions.
  • It is a process or procedure but not what you might want to call a function. The process recursively constructs the successive integers occurring in the decimal expansion of $\frac{66}{7}$.
  • When you carry out the grammar school procedure above, you know at each step what to do next. That is why is it a process. But do you have the procedure in your head all at once?
  • Well, instructions (5) through (10) could be written in a programming language as a while loop, grouping the instructions in pairs of commands ((5) and (6), (7) and (8), and so on). However many times you go through the while loop determines the number of decimal places you get.
  • It can also be described as a formally defined recursive function $F$ for which $F(n)$ is the $n$th digit in the answer.
  • Each of the program and the recursive definition mentioned in the last two bullets are exercises worth doing.
  • Each of the answers to the exercises is then a mathematical object, and that brings us to the next type of metaphor…

Object

A particular kind of metaphor or image for a mathematical concept is that of a mathematical object that represents the concept.

Examples

  • The number $10$ is a mathematical object. The expression “$3^2+1$” is also a mathematical object. It encapsulates the process of squaring $3$ and adding $1$, and so its value is $10$.
  • The long division process above finds the successive decimal places of a fraction of integers. A program that carries out the algorithm encapsulates the process of long division as an algorithm. The result is a mathematical object.
  • The expression “$1958$” is a mathematical object, namely the decimal represen­tation of the number $1958$. The expression
    “$7A6$” is the hexadecimal represen­tation of $1958$. Both represen­tations are mathematical objects with precise definitions.

Represen­tations as math objects is discussed primarily in represen­tations and Models. The difference between represen­tations as math objects and other kinds of mental represen­tations (images and metaphors) is primarily that a math object has a precise mathematical definition. Even so, they are also mental represen­tations.

Uses of mental represen­tations

Mental represen­tations of a concept make up what is arguably the most important part of the mathe­matician’s understanding of the concept.

  • Mental represen­tations of mathe­matical objects using metaphors and images are necessary for understanding and communicating about them (especially with types of objects that are new to us) .
  • They are necessary for seeing how the theory can be applied.
  • They are useful for coming up with proofs. (See example below.) 

Many represen­tations

 Different mental represen­tations of the same kind of object
help you understand different aspects of the object. 


Every important mathe­matical object
has many different kinds of represen­tations
and mathe­maticians typically keep
more that one of them in mind at once.

But images and metaphors are also dangerous (see below).

New concepts and old ones

We especially depend on metaphors and images to understand a math concept that is new to us .  But if we work with it for awhile, finding lots of examples, and
eventually proving theorems and providing counterexamples to conjectures, we begin to understand the concept in its own terms and the images and metaphors tend to fade away from our awareness.

Then, when someone asks us about this concept that we are now experts with, we
trundle out our old images and metaphors – and are often surprised at how difficult and misleading our listener finds them!

Some mathe­maticians retreat from images and metaphors because of this and refuse to do more than state the definition and some theorems about the concept. They are wrong to do this. That behavior encourages the attitude of many people that

  • Mathe­maticians can’t explain things.
  • Math concepts are incomprehensible or bizarre.
  • You have to have a mathe­matical mind to understand math.

In my opinion the third statement is only about 10 percent true.

All three of these statements are half-truths. There is no doubt that a lot of abstract math is hard to understand, but understanding is certainly made easier with the use of images and metaphors. 

Images and metaphors on this website

This website has many examples of useful mental represen­tations.  Usually, when a chapter discusses a particular type of mathe­matical object, say rational numbers, there will be a subhead entitled “Images and metaphors for rational numbers”.  This will suggest ways of thinking about them that many have found useful. 

Two levels of images and metaphors

Images and metaphors have to be used at two different levels, depending on your purpose. 

  • You should expect to use rich view for understanding, applications, and coming up with proofs.
  • You must limit yourself to the rigorous view when constructing and checking proofs.

Math teachers and texts typically do not make an explicit distinction between these views, and you have to learn about it by osmosis. In practice, teachers and texts do make the distinction implicitly.  They will say things
like, “You can think about this theorem as …” and later saying, “Now we give a rigorous proof of the theorem.”  Abstractmath.org makes this distinction explicit in many places throughout the site.

The
rich view

The kind of metaphors and images discussed in the mental represen­tations section above make math rich, colorful and intriguing to think about.  This is the rich view of math.  The rich view is vitally important.  

  • It is what makes math useful and interesting.
  • It helps us to understand the math we are working with.
  • It suggests applications.
  • It suggests approaches to proofs.
Example

You expect the ball whose trajectory is modeled by the function h(t) above  to slow down as it rises, so the derivative of h must be smaller at t
= 4
 than it is at t = 2.  A mathe­matician might even say that that is an “informal proof” that $h'(4)<h'(2)$.  A rigorous proof is given below.

The rigorous view: inertness

When we are constructing a definition or proof we cannot
trust all those wonderful images and metaphors. 

  • Definitions must
    not use metaphors.
  • Proofs must use only logical reasoning based on definitions and
    previously proved theorems.

For the point of view of doing proofs, math
objects must be thought of as inert (or static),
like your pet rock. This means they

  • don’t move or change over time, and
  • don’t interact with other objects, even other mathe­matical objects.

(See also abstract object).

  • When
    mathe­maticians say things like, “Now we give a rigorous proof…”, part of what they mean is that they have to forget about all the color
    and excitement of the rich view and think of math objects as totally
    inert. Like, put the object under an anesthetic
    when you are proving something about it.
  • As I wrote previously, when you are trying to understand arch function $h(t)=25-{{(t-5)}^{2}}$, it helps to think of it as representing a ball thrown directly upward, or as a graph describing the height of the ball at time $t$ which bends over like an arch at the time when the ball stops going upward and begins to fall down.
  • When you proving something about it, you must be in the frame of mind that says the function (or the graph) is all laid out in front of you, unmoving. That is what the rigorous mode requires. Note that the rigorous mode is a way of thinking, not a claim about what the arch function “really is”.
  • When in rigorous mode,  a mathe­matician will
    think of $h$ as a complete mathe­matical object all at once,
    not changing over time. The
    function is the total relationship of the input values of the input parameter
    $t$ to the output values $h(t)$.  It consists of a bunch of interrelated information, but it doesn’t do anything and it doesn’t change.

Formal proof that $h'(4)<h'(2)$

Above, I gave an informal argument for this.   The rigorous way to see that $h'(4)\lt h'(2)$ for the arch function is to calculate the derivative \[h'(t)=10-2t\] and plug in 4 and 2 to get \[h'(4)=10-8=2\] which is less than $h'(2)=10-4=6$.

Note the embedded
phrases
.

This argument picks out particular data about the function that
prove the statement.  It says nothing about anything slowing down as $t$
increases.  It says nothing about anything at all changing.

Other examples

  • The rigorous way to say that “Integers go to infinity in both directions” is something like this:  “For every integer n there is an integer k such that k < n  and an integer m such that n < m.”
  • The rigorous way to say that continuous functions don’t have gaps in their graph is to use the $\varepsilon-\delta $ definition of continuity.
  • Conditional assertions are one important aspect of mathe­matical reasoning in which this concept of unchanging inertness clears up a lot of misunderstanding.   “If… then…” in our intuition contains an idea of causation and of one thing happening before another (see also here).  But if objects are inert they don’t cause anything and if they are unchanging then “when” is meaningless.

The rigorous view does not apply to all abstract objects, but only to mathe­matical objects.  See abstract objects for examples.

Metaphors and images are dangerous

The price of metaphor is eternal vigilance.–Norbert Wiener

Every
mental represen­tation has flaws. Each oneprovides a way of thinking about an $A$ as a kind of $B$ in some respects. But the represen­tation can have irrelevant features.  People new to the subject will be tempted to think  about $A$ as a kind of $B$ in inappropriate respects as well.  This is a form of cognitive dissonance.

 It may be that most difficulties students have with abstract math are based on not knowing which aspects of a given represen­tation are applicable in a given situation.  Indeed, on not being consciously aware that in general you must restrict the applicability of the mental pictures that come with a represen­tation.

In abstractmath.org you will sometimes see this statement:  “What is wrong with this metaphor:”  (or image, or represen­tation) to warn you about the flaws of that particular represen­tation.

Example

The graph of the arch function $h(t)$ makes it look like the two arms going downward become so nearly vertical that the curve has vertical asymptotes
But it does not have asymptotes.  The arms going down are underneath every point of the $x$-axis. For example, there is a point on the curve underneath the point $(999,0)$, namely $(999, -988011)$.

Example

A set is sometimes described as analogous to A container. But consider:  the integer 3 is “in” the set of all odd integers, and it is also “in” the set $\left\{ 1,\,2,\,3 \right\}$.  How could something be in two containers at once?  (More about this here.)

An analogy can be help­ful, but it isn’t the same thing as the same thing. – The Economist

Example

Mathe­maticians think of the real numbers as constituting a line infinitely long in both directions, with each number as a point on the line. But this does not mean that you can think of the line as a row of points. See density of the real line.

Example

We commonly think of functions as machines that turn one number into another.  But this does not mean that, given any such function, we can construct a machine (or a program) that can calculate it.  For many functions, it is not only impractical to do, it is theoretically
impossible to do it.
They are not href=”http://en.wikipedia.org/wiki/Recursive_function_theory#Turing_computability”>computable. In other words, the machine picture of a function does not apply to all functions.

Summary


The images and metaphors you use
to think about a mathe­matical object
are limited in how they apply.


The images and metaphors you use to think about the subject
cannot be directly used in a proof.
Only definitions and previously proved theorems can be used in a proof.

Final remarks

Mental represen­tations are physical represen­tations

It seems likely that cognitive phenomena such as images and metaphors are physically represented in the brain as collec­tions of neurons connected in specific ways.  Research on this topic is pro­ceeding rapidly.  Perhaps someday we will learn things about how we think physi­cally that actually help us learn things about math.

In any case, thinking about mathe­matical objects as physi­cally represented in your brain (not neces­sarily completely or correctly!) wipes out a lot of the dualistic talk about ideas and physical objects as
separate kinds of things.  Ideas, in partic­ular math objects, are emergent constructs in the
physical brain. 

About metaphors

The language that nature speaks is mathe­matics. The language that ordinary human beings speak is metaphor. Freeman Dyson

“Metaphor” is used in abstractmath.org to describe a type of thought configuration.  It is an implicit conceptual identification
of part of one type of situation with part of another. 

Metaphors are a fundamental way we understand the world. In particular,they are a fundamental way we understand math.

The word “metaphor”

The word “metaphor” is also used in rhetoric as the name of a type of figure of speech.  Authors often refer to metaphor in the meaning of  thought configuration as a conceptual metaphor.  Other figures of speech, such as simile and synecdoche, correspond to conceptual metaphors as well.

References for metaphors in general cognition:

Fauconnier, G. and Turner, M., The Way We Think: Conceptual Blending And The Mind’s Hidden Complexities . Basic Books, 2008.

Lakoff, G., Women, Fire, and Dangerous Things. The University of Chicago Press, 1986.

Lakoff, G. and Mark Johnson, Metaphors We Live By
The University of Chicago Press, 1980.

References for metaphors and images in math:

Byers, W., How mathe­maticians Think.  Princeton University Press, 2007.

Lakoff, G. and R. E. Núñez, Where mathe­matics Comes
From
. Basic Books, 2000.

Math Stack Exchange list of explanatory images in math.

Núñez, R. E., “Do Real Numbers Really Move?”  Chapter
in 18 Unconventional Essays on the Nature of mathe­matics, Reuben Hersh,
Ed. Springer, 2006.

Charles Wells,
Handbook of mathe­matical Discourse.

Charles Wells, Conceptual blending. Post in Gyre&Gimble.

Other articles in abstractmath.org

Conceptual and computational

Functions: images and metaphors

Real numbers: images and metaphors

represen­tations and models

Sets: metaphors and images

Creative Commons License< ![endif]>

This work is licensed under a Creative Commons Attribution-ShareAlike 2.5 License.


Send to Kindle

Rigorous proofs

Rich and rigorous

When we try to understand a math statement, we visualize what the statement says using metaphors, images and kinetic feelings to feel how it is true, or to suggest that the statement is not true.

If we are convinced that it is true, we may then want to prove it. Doing that involves pitching out all the lovely pictures and metaphors and gestures and treating the mathematical objects involved in the proof as static and inert. “Static” means the object does not change. “Inert” means that it does not affect anything else. I am saying how we think about math objects for the purpose of rigorous proof. I am not saying anything about “what math objects are”.

In this post I give a detailed example of a proof of the rigorous sort.

Example

Informal statement

First, I’ll describe this example in typical spoken mathematical English. Suppose you suspect that the following statement is true:

Claim: Let $f(x)$ be a differentiable function with $f'(a)=0$.
Going from left to right, suppose the graph of $f(x)$ goes UP before $x$ reaches $a$ and then DOWN for $x$ to the right of $a$
Then $a$ has to be a local maximum of the function.

This claim is written in informal math English. Mathematicians talk like that a lot. In this example they will probably wave their hands around in swoops.

The language used is an attempt to get a feeling for the graph going up to $(a,f(a))$ and then falling away from it. It uses two different metaphors for $x\lt a$ and $x\gt a$. I suspect that most of us would want to clean that up a bit even in informal writing.

A more formal statement

Theorem: Let $f$ be a real valued differentiable function defined on an open interval $R$. Let $a$ be a number in $R$ for which $f'(a)=0$. Suppose that for all $x\in R$, $f$ increases for $x\lt a$ and decreases for $x\gt a$. Then $f(a)$ is a maximum of $f$ in $R$.

Proof

  1. By definition of derivative, \[\lim_{x\to a}\frac{f(x)-f(a)}{x-a}=0.\]
  2. By definition of limit, then for any positive $\epsilon$ there is a positive $\delta$ for which if $0\lt|x-a|\lt\delta$ then \[\left|\frac{f(x)-f(a)}{x-a}\right|\lt\epsilon.\]
  3. By requiring that $\delta\lt 1$, it follows from (2) that for any positive $\epsilon$, there is a positive $\delta$ for which if $0\lt|x-a|\lt\delta$, then $|f(x)-f(a)|\lt\epsilon$.
  4. “$f$ increases for $x\lt a$” means that if $x$ and $y$ are numbers in $R$ and $x\lt y\lt a$, then $f(x)\lt f(y)$.
  5. “$f$ decreases for $x\gt a$” means that if $x$ and $y$ are numbers in $R$ and $a\lt x\lt y$, then $f(x)\gt f(y)$.
  6. “$f(a)$ is a maximum of $f$ in $R$” means that for $x\in R$, if $x\neq a$, then $f(x)\lt f(a)$.
  7. Suppose that $x\in R$ and $x\lt a$. (The case that $x\gt a$ has a symmetric proof.)
  8. Given $\epsilon\gt0$ with $\delta$ as given by (3), choose $y\in R$ such that $x\lt y\lt a$ and $|f(y)-f(a)|\lt\epsilon$.
  9. By (4), $f(x)\lt f(y)$. So by (8), \[\begin{align*}
    f(x)-f(a)&=
    f(x)-f(y)+f(y)-f(a)\\ &\lt f(y)-f(a)\\ &\leq|f(y)-f(a)|\lt\epsilon\end{align*}\]
    so that $f(x)\lt f(a)+\epsilon$. By inserting “$-f(y)+f(y)$” into the second formula, I am “adding zero cleverly”, an example of pulling a rabbit out of a hat. Students hate that. But you have to live with it; as long as the statements following are correct, it makes a valid proof. Rabbit-out-of-a-hat doesn’t make a proof wrong, but it does make you wonder how the author thought of it. Live with it.
  10. Since (9) is true for all positive $\epsilon$, it follows that $f(x)\leq f(a)$.
  11. By the same argument as that leading up to (10), $f(\frac{x-a}{2})\leq f(a)$.
  12. Since $f(x)\lt f(\frac{x-a}{2})$, it follows that $f(x)\lt f(a)$ as required.

About the proof

This proof is intended to be a typical “rigorous” proof. I suspect it tends to be more rigorous than most mathematicians would find necessary,

Extensionality

The point about “rigor”, about insisting that the objects be static and inert, is that this causes symbols and expression to retain the same meaning throughout the text. This is one aspect of extensionality.

Of course, some of the symbols denote variables, or variable objects. This does not mean they are “varying”. I am taking this point of view: A variable refers to a math object but you don’t know what it is. Constraints such as $x\lt a$ rule out some possible values but don’t generally tell you exactly what $x$ is. There is more about this in Variable Objects

The idea in (6), for example, is that $y$ denotes a real number. You don’t know which number it is, but you do know some facts about it: $x\lt y\lt a$, $|f(y)\lt f(a)|\lt\epsilon$ and so on. Similarly you don’t know what function $f$ is, but you do know some facts about it: It is differentiable, for example, and $f'(a)=0$.

My statement that the variables aren’t “varying” means specifically that each unbound occurrence of the variable refers to the same value as any other occurrence, unless some intervening remark changes its meaning. For example, the references to $x$ in (7) through (10) refer to the same value it has in (6), and (10), in particular, constitutes a statement that the claim about $x$ is correct.

Checkability

The elimination of metaphors that lets the proof achieve rigor is part of a plan in the back of the mind of at least some mathematicians who write proofs. The idea is that the proof be totally checkable:

  • Every statement in the proof has a semantics, a meaning, that is invariant (given the remark about variables above).
  • Each statement is justified by some of the previous statements. This justification is given by two systems that the reader is supposed to understand.
  • One system is the rules of symbol manipulation that are applied to the symbolic expressions, ordinary algebra, and higher-level manipulations used in particular branches of math.
  • The other system consists of the rules of logical reasoning that justify the claims that each statement follows logically from preceding ones.
  • These two systems are really branches of one system, the entire system of math computation and reasoning. It can be obscure which system is being used in a particular step.

Suppression of reasons

The logical and symbolic-manipulation reasons justifying the deductions may not be made completely explicit. In fact, for many steps they may not be mentioned at all, and for others, one or two phrases may be used to give a hint. This is standard practice in writing “rigorous” proofs. That is a descriptive statement, made without criticism. Giving all the reasons is essentially impossible without a computer.

I am aware that some work has been done to write proof checkers that can read a theorem like the one we are considering, stated in natural language, and correctly implement the semantics I have described in this list. I don’t know of any references to such work and would appreciate information about it.

Suppression of reasons makes it difficult to mechanically check a proof written in this standard “rigorous” writing style. Basically, you must be at at least the graduate student level to be able to make sense of what is said, and even experienced math research people find it difficult to read a paper in a very different field. Writing the proof so that it can be checked by a proof checker requires understanding of the same sort, and it typically makes the proof much longer.

One hopeful new approach is to write the proofs using homotopy type theory. The pioneers in that field report that the proofs don’t expand nearly as much as is required by first order logic.

Examples of suppression

Here are many examples of suppression in the $\epsilon$-$\delta$ proof above. This is intended to raise your consciousness concerning how nearly opaque writing in math research is to anyone but the cognoscenti.

  • The first sentence of the theorem names $R$ and $f$ and puts constraints on them that can be used to justify statements in the proof. The naming of $R$ and $f$ requires that every occurrence of $R$ in the proof refers to the same mathematical object, and similarly for $f$.

Remark: The savvy reader “knows” the facts stated in (a), possibly entirely subconsciously. For many of us there is no conscious thought of constraints and permanence of naming. My goal is to convince those who teach beginning abstract math course to become conscious of these phenomena. This remark applies to all the following items as well.

  • The second sentence gives $a$ a specific meaning that will be maintained throughout the proof. It also puts constraints on $a$ and an additional constraint on $f$.
  • The third sentence gives a constraint on $R$, $f$ and $a$. It does not give a constraint on $x$, which is a bound variable. Nor does it name $x$ as a specific number with the same meaning in the rest of the proof. (That happens later).
  • The fact that the first three sentences impose constraints on various objects is signaled by the fact that the sentences are introduced by “let” and “suppose”. The savvy reader knows this.
  • The fourth sentence announces that “$f(a)$ is a maximum of $f$ in $R$” is a consequence of the constraints imposed by the preceding three sentences. (In other words, it follows from the context.) This is signaled by the word “then”.
  • The fact that the paragraph is labeled “Theorem” informs us that the fourth sentence is therefore a statement of what is to be proved, and that every constraint imposed by the first three sentences of the Theorem may be used in the proof.
  • In the proof, statements (1), (4), (5) and (6) rewrite the statements in the theorem according to the definitions of the words involved, namely “derivative: “increases”, “decreases” and “maximum”. Rewriting statements according to the definitions of the words involved is a fundamental method for starting a proof.
  • (2) follows from (1) by rewriting using the definition of “limit”. Note that pattern-matching against the definition of limit requires understanding that there is a zero inside the absolute value signs that is not written down. Could a computer proof-checker handle that?
  • (3) follows from (2). The reader or proof-checker must:
    • Know that it is acceptable to put an upper bound on $\delta$ in the definition of limit.
    • Notice that you can move $|x-a|$ out of the denominator because $x\neq a$ by (2).
  • The conclusion in (6) that we much show that $f(x)\lt f(a)$ is now the statement we must prove.

Remark: In the following items, I mention the context of the proof. I am using the word informally here. It is used in some forms of formal logic with a related but more precise meaning. The context consists of the variables you must hold in your head as you read each part of the proof, along with their current constraints. “Current” means the “now” that you are in when considering the step of the proof you are reading right now. I give some references at the end of the post.

  • At the point between (6) and (7), our context consists of $a$, $R$ and $f$ all subject to some constraints. $x$ is not yet in the context of our proof because its previous occurrences in the theorems and in (1) through (6) have been bound, mostly by an unexpressed universal quantifier. Now we are to think of $x$ as a specific number bound by some constraints.
  • The statement in (7) that the case $x\gt a$ as a symmetric proof is a much higher-level claim than the other steps in this proof, even though in fact it is not very high level compared to statements such as “An application of Serre’s spectral sequence shows$\ldots$”. Most mathematicians with even a little experience will read this statement and accept it in the confidence that they will know how to swap “$\lt$” and “$\gt$” in the proof in the correct way (which is a bit picky) to provide a dual proof. Some students might write out the dual proof to make sure they understand it (more likely because writing it out was a class assignment). I await the day that an automated proof checker can handle a statement like this.
  • (8) introduces three new math objects $\epsilon$, $\delta$ and $y$ subject to several constraints. The symbols occur earlier but they are all bound. $\epsilon$ will be fixed in our context from now until (10). The others don’t appear later.
  • (9) consists of several steps of algebraic computation. A cognoscent (I am tired of writing “savvy”) reader first looks at the computation as a whole and notices that it deduces that $|f(x)-f(a)|\lt\epsilon$, which is almost what is to be proved. This helps the reader understand the reason for the calculation. No mention whatever is made in this step of all this stuff that should go through your mind (or the proof-checker’s “mind”).
  • The computations in (9) are are basic algebra not explained step by step, except that the remark that $f(x)\lt f(y)$ explains how you get $f(x)-f(y)+f(y)-f(a) \lt f(y)-f(a)$.
  • (10) banishes $\epsilon$ from the context by universally quantifying over it. That $f(x)\leq f(a)$ follows by the garbage-dump-in-Star-Wars trick that often baffles first year analysis students: Since for all positive $\epsilon$, $f(x)\lt f(a)+\epsilon$, then $f(x)\leq f(a)$. (See also Terry Tao’s article in Tricks Wiki.)
  • (11) “By the same argument as leading up to (10)” puts some demands on the reader, who has to discover that you have to go back to (7) and do the following steps with a new context using a value of $x$ that is halfway closer to $a$ than the “old” $x$ was. This means in particular that the choice of $\frac{x-2}{2}$ is unnecessarily specific. But it works.
  • (12) suppresses the reference to (11).
  • References

    I have written extensively on these topics. Here are some links.

    Rich-rigorous bifurcation in math thinking

The symbolic language

Math English and the language of proofs

Proofs and context

Send to Kindle

Thinking about a function as a mathematical object

A mathematician’s mental representation of a function is generally quite rich and may involve many different metaphors and images kept in mind simultaneously. The abmath article on metaphors and images for functions discusses many of these representations, although the article is incomplete. This post is a fairly thorough rewrite of the discussion in that article of the representation of the concept of “function” as a mathematical object. You must think of functions as math objects when you are taking the rigorous view, which happens when you are trying to prove something about functions (or large classes of functions) in general.

What often happens is that you visualize one of your functions in many of the ways described in this article (it is a calculation, it maps one space to another, its graph is bounded, and so on) but those images can mislead you. So when you are completely stuck, you go back to thinking of the function as an axiomatically-defined mathe­matical structure of some sort that just sits there, like a complicated machine where you can see all the parts and how they relate to each other. That enables you to prove things by strict logical deduction. (Mathematicians mostly only go this far when they are desperate. We would much rather quote somebody’s theorem.) This is what I have called the dry bones approach.

The “mathematical structure” is most commonly a definition of function in terms of sets and axioms. The abmath article Specification and definition of “function” discusses the usual definitions of “function” in detail.

Example

This example is intended to raise your consciousness about the possibilities for functions as objects.

Consider the function $f:\mathbb{R}\to\mathbb{R}$ defined by $f(x)=2{{\sin }^{2}}x-1$. Its value can be computed at many different numbers but it is a single, static math object.

You can apply operators to it

  • Just as you can multiply a number by $2$, you can multiply $f$ by $2$.   You can say “Let $g(x)=2f(x)$” or “Let $g=2f$”. Multiplying a numerical function by $2$ is an operator that take the function $f$ to $2f$. Its input is a function and its output is another function. Then the value of $g$ (which is $2f$) at any real $x$ is $g(x)=2f(x)=4{{\sin }^{2}}x-2$. The notation  “$g=2f$” reveals that mathematicians think of $f$ as a single math object just as the $3$ in the expression “$2\times 3$” represents the number $3$ as a single object.
  • But you can’t do arithmetic operations to functions that don’t have numerical output, such as the function $\text{FL}$ that takes an English word to its first letter, so $\text{FL}(`\text{wolf’})=`\text{w’}$. (The quotes mean that I am writing about the word ‘wolf’ and the letter ‘w’.) The expression $2\times \text{FL}(`\text{wolf’})$ doesn’t make sense because ‘w’ is a letter, not a number.
  • You can find the derivative.  The derivative operator is a function from differentiable functions to functions. Such a thing is usually called an operator.  The derivative operator is sometimes written as $D$, so $Df$ is the function defined by: “$(Df)(x)$ is the slope of the tangent line to $f$ at the point $(x,f(x)$.” That is a perfectly good definition. In calculus class you learn formulas that allow you to calculate $(Df)(x)$ (usually called “$f'(x)$”) to be $4 \sin (x) \cos (x)$.

Like all math objects, functions may have properties

  • The function defined by $f(x)=2{{\sin}^{2}}x-1$ is differentiable, as noted above. It is also continuous.
  • But $f$ is not injective. This means that two different inputs can give the same output. For example,$f(\frac{\pi}{3})=f(\frac{4\pi}{3})=\frac{1}{2}$. This is a property of the whole function, not individual values. It makes no sense to say that $f(\frac{\pi}{3})$ is injective.
  • The function $f$ is periodic with period $2\pi$, meaning that for any $x$, $f(x+2\pi)=f(x)$.     It is the function itself that has period $2\pi$, not any particular value of it.  

As a math object, a function can be an element of a set

  • For example,$f$ is an element of the set ${{C}^{\infty }}(\mathbb{R})$ of real-valued functions that have derivatives of all orders.
  • On ${{C}^{\infty }}(\mathbb{R})$, differentiation is an operator that takes a function in that set to another function in the set.   It takes $f(x)$ to the function $4\sin x\cos x$.
  • If you restrict $f$ to the unit interval, it is an element of the function space ${{\text{L}}^{2}}[0,1]$.   As such it is convenient to think of it as a point in the space (the whole function is the point, not just values of it).    In this particular space, you can think of the points as vectors in an uncountably-infinite-dimensional space. (Ideas like that weird some people out. Do not worry if you are one of them. If you keep on doing math, function spaces will seem ordinary. They are OK by me, except that I think they come in entirely too many different kinds which I can never keep straight.) As a vector, $f$ has a norm, which you can think of as its length. The norm of $f$ is about $0.81$.

The discussion above shows many examples of thinking of a function as an object. You are thinking about it as an undivided whole, as a chunk, just as you think of the number $3$ (or $\pi$) as just a thing. You think the same way about your bicycle as a whole when you say, “I’ll ride my bike to the library”. But if the transmission jams, then you have to put it down on the grass and observe its individual pieces and their relation to each other (the chain came off a gear or whatever), in much the same way as noticing that the function $g(x)=x^3$ goes through the origin and looks kind of flat there, but at $(2,8)$ it is really rather steep. Phrases like “steep” and “goes through the origin” are a clue that you are thinking of the function as a curve that goes left to right and levels off in one place and goes up fast in another — you are thinking in a dynamic, not a static way like the dry bones of a math object.

Send to Kindle