Tag Archives: Reuben Hersh

Thinking about thought

Modules of the brain

Cognitive neuroscientists have taken the point of view that concepts, memories, words, and so on are represented in the brain by physical systems: perhaps they are individual neurons, or systems of structures, or even waves of discharges. In my previous writing I have referred to these as modules, and I will do that here. Each module is connected to many other modules that encode various properties of the concept, thoughts and memories that occur when you think of that concept (in other words stimulate the module), and so on.

How these modules implement the way we think and perceive the world is not well understood and forms a major research task of cognitive neuroscience. The fact that they are implemented in physical systems in the brain gives us a new way of thinking about thought and perception.

Examples

The grandmother module

There is a module in your brain representing the concept of grandmother. It is likely to be connected to other modules representing your actual grandmothers if you have any memory of them. These modules are connected to many others — memories (if you knew them), other relatives related to them, incidents in their lives that you were told about, and so on. Even if you don’t have any memory of them, you have a module representing the fact that you don’t have any memory of them, and maybe modules explaining why you don’t.

Each different aspect related to “grandmother” belongs to a separate module somehow connected to the grandmother module. That may be hard to believe, but the human brain has over eighty billion neurons.

A particular module connected with math

There is a module in your brain connected with the number $42$. That module has many connections to things you know about it, such as its factorization, the fact that it is an integer, and so on. The module may also have connections to a module concerning the attitude that $42$ is the Answer. If it does, that module may have a connection with the module representing Douglas Adams. He was physically outside your body, but is the number $42$ outside your body?

That has a decidedly complicated answer. The number $42$ exists in a network of brains which communicate with each other and share some ideas about properties of $42$. So it exists socially. This social existence occasionally changes your knowledge of the properties of $42$ and in particular may make you realize that you were wrong about some of its aspects. (Perhaps you once thought it was $7\times 8$.)

This example suggests how I have been using the module idea to explain how we think about math.

A new metaphor for understanding thinking

I am proposing to use the idea of module as a metaphor for thinking about thinking. I believe that it clarifies a lot of the confusion people have about the relation between thinking and the real world. In particular it clarifies why we think of mathematical objects as if they were real-world objects (see Modules and math below.)

I am explicitly proposing this metaphor as a successor to previous metaphors drawn from science to explain things. For example when machines became useful in the 18th century many naturalists used metaphors such as the Universe is a Machine or the Body is a Machine as a way of understanding the world. In the 20th century we fell heavily for the metaphor that the Mind Is A Computer (or Program). Both the 18th century and the 20th century metaphors (in my opinion) improved our understanding of things, even though they both fell short in many ways.

In no way am I claiming that the ways of thinking I am pushing have anything but a rough resemblance to current neuroscientists’ thinking. Even so, further discoveries in neuroscience may give us even more insight into thinking that they do now. Unless at some point something goes awry and we have to, ahem, think differently again.

For thousands of years, new scientific theories have been giving us new metaphors for thinking about life, the universe and everything. I am saying here is a new apple on the tree of knowledge; let’s eat it.

The rest of this post elaborates my proposed metaphor. Like any metaphor, it gets some things right and some wrong, and my explanations of how it works are no doubt full of errors and dubious ideas. Nevertheless, I think it is worth thinking about thought using these ideas with the usual correction process that happens in society with new metaphors.

Our theory of the world

We don’t have any direct perception of the “real world”; we have only the sensations we get from those parts of our body which sense things in the world. These sensations are organized by our brain into a theory of the world.

  • The theory of the world says that the world is “out there” and that our sensory units give us information about it. We are directly aware of our experiences because they are a function of our brain. That the experiences (many of them) originate from outside our body is a very plausible theory generated by our brain on the bases of these experience.
  • The theory is generated by our brain in a way that we cannot observe and is out of our control (mostly). We see a table and we know we can see in in daytime but not when it is dark and we can bump into it, which causes experiences to occur via our touch and sound facilities. But the concept of “table” and the fact that we decide something is or is not a table takes place in our brain, not “out there”.
  • We do make some conscious amendments to the theory. For example, we “know” the sky is not a blue shell around our world, although it looks like it. That we think of the apparent blue surface as an artifact of our vision processing comes about through conscious reasoning. But most of how we understand the world comes about subconsciously.
  • Our brain (and the rest of our body) does an enormous amount of processing to create the view of the world that we have. Visual perception requires a huge amount of processing in our brain and the other sensory methods we use also undergo a lot of processing, but not as much as vision.
  • The theory of the world organizes a lot of what we experience as interaction with physical objects. We perceive physical objects as having properties such as persistence, changing with time, and so on. Our brains create the concept of physical object and the properties of persistence, changing, and particular properties an individual object might have.
  • We think of the Mississippi River as an object that is many years old even though none of its current molecules are the same as were in the river a decade ago. How is it one thing when its substance is constantly changing? This is a famous and ancient conundrum which becomes a non-problem if you realize that the “object” is created inside your brain and imposed by your thinking on your understanding of the world.
  • The notion that semantics is a connection between our brain and the outside world has also become a philosophical conundrum that vanishes if we understand that the connection with the outside world exists entirely inside our theory, which is entirely within our brain.

Society

Our brain also has a theory of society We are immersed in a world of people, that we have close connections with some of them and more distant connections with many other via speech, stories, reading and various kinds of long-distance communications.

  • We associate with individual people, in our family and with our friend. The communication is not just through speech: it involves vision heavily (seeing what The Other is thinking) and probably through pheromones, among other channels. For one perspective on vision, see The vision revolution, by Mark Changizi. (Review)
  • We consciously and unconsciously absorb ideas and attitudes (cultural and otherwise) from the people around us, especially including the adults and children we grow up with. In this way we are heavily embedded in the social world, which creates our point of view and attitudes by our observation and experience and presumably via memes. An example is the widespread recent changes in attitudes in the USA concerning gay marriage.
  • The theory of society seems to me to be a mechanism in our brain that is separate from our theory of the physical world, but which interacts with it. But it may be that it is better to regard the two theories as modules in one big theory.

Modules and math

The module associated with a math object is connected to many other modules, some of which have nothing to do with math.

  • For example, they may have have connections to our sensory organs. We may get a physical feeling that the parabola $y=x^2$ is going “up” as $x$ “moves to the right”. The mirror neurons in our brain that “feel” this are connected to our “parabola $y=x^2$” module. (See Constructivism and Platonism and the posts it links to.)
  • I tend to think of math objects as “things”. Every time I investigate the number $111$, it turns out to be $3\times37$. Every time I investigate the alternating group on $6$ letters it is simple. If I prove a new theorem it feels as if I have discovered the theorem. So math objects are out there and persistent.
  • If some math calculation does not give the same answer the second time I frequently find that I made a mistake. So math facts are consistent.
  • There is presumably a module that recognizes that something is “out there” when I have repeatable and consistent experiences with it. The feeling originates in a brain arranged to detect consistent behavior. The feeling is not evidence that math objects exist in some ideal space. In this way, my proposed new way of thinking about thought abolishes all the problems with Platonism.
  • If I think of two groups that are isomorphic (for example the cyclic group of order $3$ and the alternating group of rank $3$), I picture them as in two different places with a connection between the two isomorphic ones. This phenomenon is presumably connected with modules that respond to seeing physical objects and carrying with them a sense of where they are (two different places). This is a strategy my brain uses to think about objects without having to name them, using the mechanism already built in to think about two things in different places.

Acknowledgments

Many of the ideas in this post come from my previous writing, listed in the references. This post was also inspired by ideas from Chomsky, Jackendoff (particularly Chapter 9), the Scientific American article Brain cells for Grandmother by Quian Quiroga, Fried and Koch, and the papers by Ernest and Hersh.


References

Previous posts

In reverse chronological order

Abstractmath articles

Other sources

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 2.5 License.


Send to Kindle

Shared mental objects

Notes on viewing

Shared mental objects

I propose the phrase "shared mental object" to name the sort of thing that includes mathematical objects, abstract objects, fictional objects and other concepts with the following properties: ​

  • They are not physical objects
  • We think of them as objects 
  • We share them with other people

It is the name "shared mental object" that is a new idea; the concept has been around in philosophy and math ed for awhile and has been called various things, especially "abstract object", which is the name I have used in abstractmath.

I will go into detail concerning some examples in order to make the concept clear.  If you examine this concept deeply you discover many fine points, nested ideas and circles of examples that go back on themselves.  I will not get very far into these fine points here, but I have written about some of them posts and in abmath (see references).  I am working on a post about some of the fine points and will publish it if I can control its tendency to expand into infinite proliferation and recursion.

Examples

 

Messages

There is a story about the early days of telegraphy:  A man comes into the newly-opened telegraph station and asks to send a telegram to his son who is working in another city. He writes out the message and gives it to the operator with his payment.  The operator puts the message on a spike and clicks the key in front of him for a while, then says, "I have sent your message.  Thanks for shopping at Postal Telegraph".  The man looks astonished and points at the message and says, "But it is still here!"

A message is a shared mental object.  

  • It may be represented by a physical object, such as a piece of paper with writing on it, and people commonly refer to the paper as the message.  
  • It may be a verbal message from you, perhaps delivered by another person to a third person by speech.  
  • The delivery process may introduce errors (so can sending a telegraph).  So the thoughts in the three brains (the sender, the deliverer and the recipient) can differ from each other, but they can still talk about "the message" as if it were one object.

Other examples that are similar in nature to messages are schedules and the month of September (see Math Objects in abmath, where they are called abstract objects.).  In English-speaking communities, September is a cultural default: you are expected to know what it is. You can know that September is a month and that right this minute it is not September (unless it is September). You may think that September has 31 days and most people would say you are wrong, but they would agree that you and they are talking about the same month.

The general concept of the month of September and facts concerning it have been in shared existence in English-speaking cultural groups for (maybe) a thousand years.  In contrast, a message is usually shared by only two or three people and it has a short life; a few years from now, it may be that none of the people involved with the message remember what it said or even that it existed.

Symbols

symbol, such as the letter "a" or the integral sign "$\int$", is a shared mental object.  Like the month of September, but unlike messages, letters are shared by large cultural entities, every language community that uses the Latin alphabet (and more) in the case of "a", and math and tech people in the case of "$\int$". 

The letter "a" is represented physically on paper, a blackboard or a screen, among other things.  If you are literate in English and recognize an occurrence as representing the letter, you probably do this using a process in the brain that is automatic and that operates outside your awareness

Literate readers of English also generally agree that a string of letters either does or does not represent the word "default" but there are borderline cases (as in those little boxes where you have to prove you are not a robot) where they may disagree or admit that they don't know.  Even so, the letter "a" and the word "default" are shared in the minds of many people and there is general (but not absolutely universal) agreement on when you are seeing representations of them.

Fictional objects

Fictional objects such as Sherlock Holmes and unicorns are shared mental objects.  I wrote briefly about them in Mathematical objects and will not go into them here.  

Mathematical objects 

The integer $111$, the integral $\int_0^1 x^2\,dx$ and the set of all real numbers are all mathematical objects.   They are all shared mental objects.  In most of the world, people with a little education will know that $111$ is a number and what it means to have $111$ beans in a jar (for example).  They know that it is one more that $110$ and a lot more than $42$.  

Mathematicians, scientists and STEM students will know something about what  $\int_0^1 x^2\,dx$ means and they will probably know how to calculate it.  Most  of them may be able to do it in their head.  I have taught calculus so many times that I know it "by heart", which means that it is associated in my brain with the number $1/3$ in such a way that when I see the integral the number automatically and without effort pops us (in the same way that I know September has 30 days).

Beginning calculus students may have a confused and incorrect understanding of the set of all real numbers in several ways, but practicing mathematicians (and many others) know that it is an uncountably infinite dense set and they think of it as an object.  A student very likely does not think of it as an object, but as a sprawling unimaginable space that you cannot possibly regard as a thing. Students may picture a real number as having another real number sitting right beside it — the next biggest one. Most practicing mathematicians think of the set of real numbers as a completed infinity — every real number is already there —  and they know that between any two of them there is another one.

As a consequence, when students and professors talk about real numbers the student finds that some times the professor says things that sound completely wrong and the professor hears the student say things that are bizarre and confused.  They firmly believe they are talking about the same thing, the real numbers, but the student is seen by the professor as wrong and the professor is seen by the students as talking meaningless nonsense.  Even so, they believe they are talking about the same thing.

Nomenclature

I tried various other names before I came to "shared mental objects".

  • I called them abstract objects in abstractmath.  The word "abstract" does not convey their actual character — they are mental and they are shared.
  • They are non-physical objects, a phrase widely used in philosophy, but naming something by a negation is always a bad idea.  
  • Co-mental objects is ugly and comental looks like a misspelling.
  • Intermental objects sounds like it has something to do with burial.  Maybe InterMental?
  • The word entity may avoid some confusion caused by the word "object", which suggests physical object.  But "object" is widely used in philosophy and in math ed in the way it is used here.
  • Meme?  Well, in some sense a shared mental object is a meme.  Memes have a connotation of forcing themselves into your brain that I don't want, but I want to consider the relationship further.

The major advantage of "shared mental object" is that it describes the important properties of the concept: It is a mental object and it is shared by people.  It has no philosophical implications concerning platonism, either. Mathematical objects do have special properties of verifiability that general shared mental objects do not, but my terminology does not suggest any existence of absolute truth or of an Ideal existing in another world.  I don't believe in such things, but some people do and I want to point out that "shared mental object" does not rule such things out — it merely gives a direct evidence-based description of a phenomenon that actually exists in the real world.

References  

Abstract objects in the Stanford Encyclopedia of Philosophy

Abstract object in Wikipedia

Mathematical objects in abstractmath

Mathematical objects in Wikipedia

What is Mathematics, Really?  R. Hersh, Oxford University Press, 1997

Previous posts

Representations of mathematical objects 

Representations III: Rigor and Rigor Mortis

Representations II: Dry Bones

Notes on Viewing  

This post uses MathJax. If you see mathematical expressions with dollar signs around them, or badly formatted formulas, try refreshing the screen. Sometimes you have to do it two or three times.

Send to Kindle

Abstract objects

Some thoughts toward revising my article on mathematical objects.  

Mathematical objects are a kind of abstract object.  There are lots of abstract objects that are not mathematical objects,  For example, if you keep a calendar or schedule for appointments, that calendar is an abstract object.  (This example comes from [2]). 

It may be represented as a physical object or you may keep it entirely in your head.  I am not going to talk about the latter possibility, because I don't know what to say.

  1. If it is a paper calendar, that physical object represents the information that is contained in your calendar.  
  2. Same for a calendar on a computer, but that is stored as magnetic bits on a disk or in flash memory. A computer program (part of the operating system) is required to present it on the screen in such a way that you can read it.  Each time you open it, you get a new physical representation of the calendar.

Your brain contains a module (see [5], [7]) that interprets the representation in (1) or (2) and which has connections with other modules in your brain for dates, times, locations and whether the appointment is for a committee, a medical exam, or whatever.  

The calendar-interpreter module in your brain is necessary for the physical object to be a calendar.  The physical object is not in itself your calendar.  The calendar in this sense does not exist in the physical world.  It is abstract.  Since we think of it as a thing, it is an abstract object.

The abstract object "my calendar" affects the physical world (it causes you to go to the dentist next Tuesday).  The relation of the abstract object to the physical world is mediated by whatever physical object you call your calendar along with the modules in the brain that relate to it.  The modules in the brain are actions by physical objects, so this point of view does not involve Cartesian style dualism.

Note:  A module is a meme.  Are all memes modules?  This needs to be investigated.  Whatever they are, they exist as physical objects in people's brains.

Mathematical objects

A rigorous proof of a theorem about a mathematical object tends to refer to the object as if it were absolutely static and did not affect anything in the physical world.  I talked about this in [10], where I called it the dry bones representation of a mathematical object.  Mathematical objects don't have to be thought of this way, but (I suggest) what makes them mathematical objects is that they can be thought of in dry bones mode.  

If you use calculus to figure out how much fuel to use in a rocket to make it go a mile high, then actually use that amount in the rocket and send it off, your calculations have affected your physical actions, so you were thinking of the calculations as an abstract object.  But if you sit down to check your calculations, you concentrate on the steps one by one with the rules of algebra and calculus in mind.  You are looking at them as inert objects, like you would look at a bone of a dinosaur to see what species it belongs to. From that point of view your calculations form a mathematical object, because you are using the dry-bones approach.

Caveat

All this blather is about how you should think about mathematical objects.  It can be read as philosophy, but I have no intention of defending it as philosophy.  People learning abstract math at college level have a lot of trouble thinking about mathematical objects as objects, and my intention is to start clarifying some aspects of how you think about them in different circumstances.  (The operative word is "start" — there is a lot more to be said.)

About the exposition of this post (a commercial)

You will notice that I gave examples of abstract objects but did not define the word "abstract object".  I did the same with mathematical objects.  In both cases, I put the word "abstract object" or "mathematical object" in boldface at a suitable place in the exposition.

That is not the way it is done in math, where you usually make the definition of a word in a formal way, marking it as Definition, putting the word in bold or italics, and listing the attributes it must have.  I want to point out two things:

  • For the most part, that behavior is peculiar to mathematics.
  • This post is not a presentation of mathematical ideas.  

This gives me an opportunity for a commercial:  Read what we have written about definitions in References [1], [3] and [4].

References

  1. Atish Bagchi and Charles Wells, Varieties of Mathematical Prose, 1998.
  2. Reuben Hersh, What is mathematics, really? Oxford University Press, 1997
  3. Charles Wells, Handbook of Mathematical Discourse.
  4. Charles Wells, Mathematical objects in abstractmath.org
  5. Math and modules of the mind (previous post)
  6. Mathematical Concepts (previous post)
  7. Thinking about abstract math (previous post)
  8. Terrence W. Deacon, Incomplete Nature.  W. W. Norton, 2012. [I have read only a little of this book so far, but I think he is talking about abstract objects in the sense I have described above.]
  9. Gideon Rosen, Abstract Objects.  Stanford Encyclopedia of Philosophy.
  10. Representations II: Dry Bones (previous post)

 

http://plato.stanford.edu/entries/abstract-objects/

Send to Kindle