Tag Archives: quadratic formula

Pattern recognition in understanding math

Abstract patterns

This post is a revision of the article on pattern recognition in abstractmath.org.

When you do math, you must recognize abstract patterns that occur in

  • Symbolic expressions
  • Geometric figures
  • Relations between different kinds of math structures.
  • Your own mental representations of mathematical objects

This happens in high school algebra and in calculus, not just in the higher levels of abstract math.

Examples

Most of these examples are revisited in the section called Laws and Constraints.

At most

For real numbers $x$ and $y$, the phrase “$x$ is at most $y$” means by definition $x\le y$. To understand this definition requires recognizing the pattern “$x$ is at most $y$” no matter what expressions occur in place of $x$ and $y$, as long as they evaluate to real numbers.

Examples

  • “$\sin x$ is at most $1$” means that $\sin x\le 1$. This happens to be true for all real $x$.
  • “$3$ is at most $7$” means that $3\leq7$. You may think that “$3$ is at most $7$” is a silly thing to say, but it nevertheless means that $3\leq7$ and so is a correct statement.
  • “$x^2+(y-1)^2$ is at most $5$” means that
    $x^2+(y-1)^2\leq5$. This is true for some pairs $(x,y)$ and false for others, so it is a constraint. It defines the disk below:

The product rule for derivatives

The product rule for differentiable functions $f$ and $g$ tells you that the derivative of $f(x)g(x)$ is \[f'(x)\,g(x)+f(x)\,g'(x)\]

Example

You recognize that the expression ${{x}^{2}}\sin x$ fits the pattern $f(x)g(x)$ with $f(x)={{x}^{2}}$ and $g(x)=\sin x$. Therefore you know that the derivative of ${{x}^{2}}\,\sin x$ is \[2x\sin x+{{x}^{2}}\cos x\]

The quadratic formula

The quadratic formula for the solutions of an equation of the form $a{{x}^{2}}+bx+c=0$ is usually given as\[r=\frac{-b\pm
\sqrt{{{b}^{2}}-4ac}}{2a}\]

Example

If you are asked for the roots of $3{{x}^{2}}-2x-1=0$, you recognize that the polynomial on the left fits the pattern $a{{x}^{2}}+bx+c$ with

  • $a\leftarrow3$ (“$a$ replaced by $3$”)
  • $b\leftarrow-2$
  • and $c\leftarrow-1$.

Then
substituting those values in the quadratic formula gives you the roots $-1/3$ and $1$.

Difficulties with the quadratic formula

A little problem

The quadratic formula is easy to use but it can still cause pattern recognition problems. Suppose you are asked to find the solutions of $3{{x}^{2}}-7=0$. Of course you can do this by simple algebra — but pretend that the first thing you thought of was using the quadratic formula.

  • Then you got upset because you have to apply it to $a{{x}^{2}}+bx+c$
  • and $3{{x}^{2}}-7$ has only two terms
  • but $a{{x}^{2}}+bx+c$ has three terms…
  • (Help!)
  • Do Not Be Anguished:
  • Write
    $3{{x}^{2}}-7$ as $3{{x}^{2}}+0\cdot x-7$, so $a=3$, $b=0$ and $c=-7$.
  • Then put those values into the quadratic formula and you get $x=\pm \sqrt{\frac{7}{3}}$.   
  • This is an example of the following useful principle:


    Write zero cleverly.

    I suspect that most people reading this would not have had the problem with $3{{x}^{2}}-7$ that I have just described. But before you get all insulted, remember:


    The thing about really easy examples is that they give you the point without getting you lost in some complicated stuff you don’t understand very well.

    A fiendisher problem

      Even college students may have trouble with the following problem (I know because I have tried it on them):

    What are the solutions of the equation $a+bx+c{{x}^{2}}=0$?

    The answer

             

    \[r=\frac{-b\pm
    \sqrt{{{b}^{2}}-4ac}}{2a}\]

    is wrong. The correct answer is

                                     \[r=\frac{-b\pm
    \sqrt{{{b}^{2}}-4ac}}{2c}\]


    When you remember a pattern with particular letters in it and an example has some of the same letters in it, make sure they match the pattern!

    The substitution rule for integration

    The chain rule says that the derivative of a function of the form $f(g(x))$ is $f'(g(x))g'(x)$. From this you get the substitution rule for finding indefinite integrals:

                                      \[\int{f'(g(x))g'(x)\,dx}=f(g(x))+C\]

    Example

    To find $\int{2x\,\cos
    ({{x}^{2}})\,dx}$, you recognize that you can take $f(x)=\sin x$and $g(x)={{x}^{2}}$ in the formula, getting \[\int{2x\,\cos ({{x}^{2}})\,dx}=\sin ({{x}^{2}})\]    Note that in the way I wrote the integral, the functions occur in the opposite order from the pattern. That kind of thing happens a lot.

    Laws and constraints

    • The statement “$(x+1)^2=x^2+2x+1$” is a pattern that is true for all numbers $x$. $3^2=2^2+2\times2+1$ and $(-2)^2=(-1)^2+2\times(-1)+1$, and so on. Such a pattern is a universal assertion, so it is a theorem. When the statement is an equation, as in this case, it is also called a law.
    • The statement “$\sin x\leq 1$” is also true for all $x$, and so is a theorem.
    • The statement “$x^2+(y-1)^2$ is at most $5$” is true for some real numbers and not others, so it is not a theorem, although it is a constraint.
    • The quadratic formula says that:
      The solutions of an equation
      of the form $a{{x}^{2}}+bx+c=0$ is
      given by\[r=\frac{-b\pm
      \sqrt{{{b}^{2}}-4ac}}{2a}\]

      This is true for all complex numbers $a$, $b$, $c$.
      The $x$ in the equation is not a free variable, but a “variable to be solved for” and does not appear in the quadratic formula. Theorems like the quadratic formula are usually called “formulas” rather than “laws”.

    • The product rule for derivatives

      The derivative of $f(x)g(x)$ is $f'(x)\,g(x)+f(x)\,g'(x)$

      is true for all differentiable functions $f$ and $g$. That means it is true for both of these choices of $f$ and $g$:

      • $f(x)=x$ and $g(x)=x\sin x$
      • $f(x)=x^2$ and $g(x)=\sin x$

      But both choices of $f$ and $g$ refer to the same function $x^2\sin x$, so if you apply the product rule in either case you should get the same answer. (Try it).

    Some bothersome types of pattern recognition

    Dependence on conventions

    Definition: A quadratic polynomial in $x$is an expression of the form $a{{x}^{2}}+bx+c$.   

    Examples

    • $-5{{x}^{2}}+32x-5$ is a quadratic polynomial: You have to recognize that it fits the pattern in the definition by writing it as $(-5){{x}^{2}}+32x+(-5)$
    • So is ${{x}^{2}}-1$: You have to recognize that it fits the definition by writing it as ${{x}^{2}}+0\cdot x+(-1)$ (I wrote zero cleverly).

    Some authors would just say, “A quadratic polynomial is an expression of the form $a{{x}^{2}}+bx+c$” leaving you to deduce from conventions on variables that it is a polynomial in $x$ instead of in $a$ (for example).

    Note also that I have deliberately not mentioned what sorts of numbers $a$, $b$, $c$ and $x$ are. The authors may assume that you know they are using real numbers.

    An expression as an instance of substitution

    One particular type of pattern recognition that comes up all the time in math is recognizing that a given expression is an instance of a substitution into a known expression.

    Example

    Students are sometimes baffled when a proof uses the fact that ${{2}^{n}}+{{2}^{n}}={{2}^{n+1}}$ for positive integers $n$. This requires the recognition of the patterns $x+x=2x$ and $2\cdot
    \,{{2}^{n}}={{2}^{n+1}}$.

    Similarly ${{3}^{n}}+{{3}^{n}}+{{3}^{n}}={{3}^{n+1}}$.

    Example

    The assertion

    \[{{x}^{2}}+{{y}^{2}}\ge 0\ \ \ \ \ \text{(1)}\]

    has as a special case

    \[(-x^2-y^2)^2+(y^2-x^2)^2\ge
    0\ \ \ \ \ \text{(2)}\]

    which involves the substitutions $x\leftarrow -{{x}^{2}}-{{y}^{2}}$ and $y\leftarrow
    {{y}^{2}}-{{x}^{2}}$.

    Remarks
    • If you see (2) in a text and the author blithely says it is “never negative”, that is because it is of the form \[{{x}^{2}}+{{y}^{2}}\ge 0\] with certain expressions substituted for $x$ and $y$. (See substitution and The only axiom for algebra.)
    • The fact that there are minus signs in (2) and that $x$ and $y$ play different roles in (1) and in (2) are red herrings. See ratchet effect and variable clash.
    • Most people with some experience in algebra would see quickly that (2) is correct by using chunking. They would visualize (2) as

      \[(\text{something})^2+(\text{anothersomething})^2\ge0\]
      This shows that in many cases


      chunking is a psychological inverse to substitution

    • Note that when you make these substitutions you have to insert appropriate parentheses (more here). After you make the substitution, the expression of course can be simplified a whole bunch, to

      \[2({{x}^{4}}+{{y}^{4}})\ge0\]

    • A common cause of error in doing this (a mistake I make sometimes) is to try to substitute and simplify at the same time. If the situation is complicated, it is best to

      substitute as literally as possible and then simplify

    Integration by Parts

    The rule for integration by parts says that

                             \[\int{f(x)\,g'(x)\,dx=f(x)\,g(x)-\int{f'(x)\,g(x)\,dx}}\]

    Suppose you need to find $\int{\log x\,dx}$.(In abstractmath.org, “log” means ${{\log }_{e}}$).  Then we can recognize this integral as having the pattern for the left side of the parts formula with $f(x)=1$ and $g(x)=\log \,x$. Therefore

    \[\int{\log x\,dx=x\log x-\int{\frac{1}{x}dx=x\log \,x-x+c}}\]

    How on earth did I think to recognize $\log x$ as $1\cdot \log x$??  
    Well, to tell the truth because some nerdy guy (perhaps I should say some other nerdy guy) clued me in when I was taking freshman calculus. Since then I have used this device lots of times without someone telling me — but not the first time.

    This is an example of another really useful principle:


    Write $1$ cleverly.

    Two different substitutions give the same expression

    Some proofs involve recognizing that a symbolic expression or figure fits a pattern in two different ways. This is illustrated by the next two examples. (See also the remark about the product rule above.) I have seen students flummoxed by Example ID, and Example ISO is a proof that is supposed to have flummoxed medieval geometry students.

    Example ID

    Definition: In a set with an associative binary operation and an identity element $e$, an element $y$ is the inverse of an element $x$ if

    \[xy=e\ \ \ \ \text{and}\ \ \ \ yx=e \ \ \ \ (1)\]

    In this situation, it is easy to see that $x$ has only one inverse: If $xy=e$ and $xz=e$ and $yx=e$ and $zx=e$, then \[y=ey=(zx)y=z(xy)=ze=z\]

    Theorem: ${{({{x}^{-1}})}^{-1}}=x$.

    Proof: I am given that ${{x}^{-1}}$ is the inverse of $x$, By definition, this means that

    \[x{{x}^{-1}}=e\ \ \ \text{and}\ \ \ {{x}^{-1}}x=e \ \ \ \ (2)\]

    To prove the theorem, I must show that $x$ is the inverse of ${{x}^{-1}}$. Because $x^{-1}$ has only one inverse, all we have to do is prove that

    \[{{x}^{-1}}x=e\ \ \ \text{and}\ \ \ x{{x}^{-1}}=e\ \ \ \ (3)\]  

    But (2) and (3) are equivalent! (“And” is commutative.)

    Example ISO

    This sort of double substitution occurs in geometry, too.

    Theorem: If a triangle has two equal angles, then it has two equal sides.

    Proof: In the figure, assume $\angle ABC=\angle ACB$. Then triangle $ABC$ is congruent to triangle $ACB$ since the sides $BC$ and $CB$ are equal (they are the same line segment!) and the adjoining angles are equal by hypothesis.

    The point is that although triangles $ABC$ and $ACB$ are the same triangle, and sides $BC$ and $CB$ are the same line segment, the proof involves recognizing them as geometric figures in two different ways.

    This proof (not Euclid’s origi­nal proof) is hundreds of years old and is called the pons asinorum (bridge of donkeys). It became famous as the first theorem in Euclid’s books that many medi­eval stu­dents could not under­stand. I con­jecture that the name comes from the fact that the triangle as drawn here resembles an ancient arched bridge. These days, isos­ce­les tri­angles are usually drawn taller than they are wide.

    Technical problems in carrying out pattern matching

    Parentheses

    In matching a pattern you may have to insert parentheses. For example, if you substitute $x+1$ for $a$, $2y$ for
    $b$ and $4$ for $c$ in the expression \[{{a}^{2}}+{{b}^{2}}={{c}^{2}}\] you get \[{{(x+1)}^{2}}+4{{y}^{2}}=16\]
    If you did the substitution literally without editing the expression so that it had the correct meaning, you would get \[x+{{1}^{2}}+2{{y}^{2}}={{4}^{2}}\] which is not the result of performing the substitution in the expression ${{a}^{2}}+{{b}^{2}}={{c}^{2}}$.   

    Order switching

    You can easily get confused if the patterns involve a switch in the order of the variables.

    Notation for integer division

    • For integers $m$ and $n$, the phrase “$m$ divides $n$” means there is an integer $q$ for which $n=qm$.
    • In number theory (which in spite of its name means the theory of positive integers) the vertical bar is used to denote integer division. So $3|6$ because $6=2\times 3$ ($q$ is $2$ in this case). But “$3|7$” is false because there is no integer $q$ for which $7=q\times 3$.
    • An equivalent definition of division says that $m|n$ if and only if $n/m$ is an integer. Note that $6/3=2$, an integer, but $7/3$ is not an integer.
    • Now look at those expressions:
    • “$m|n$” means that there is an integer $q$ for which $n=qm$.In these two expressions, $m$ and $n$ occur in opposite order.
    • “$m|n$” is true only if $n/m$ is an integer. Again, they are in opposite order. Another way of writing $n/m$ is $\frac{n}{m}$. When math people pronounce “$\frac{n}{m}$” they usually say, “$n$ over $m$” using the same order.
  • I taught these notation in courses for computer engineering and math majors for years. Some of the students stayed hopelessly confused through several lectures and lost points repeatedly on homework and exams by getting these symbols wrong.
  • The problem was not helped by the fact that “$|$” and “$/$” are similar but have very different syntax:

    Math notation gives you no clue which symbols are operators (used to form expressions) and which are verbs (used to form assertions).

  • A majority of the students didn’t have so much trouble with this kind of syntax. I have noticed that many people have no sense of syntax and other people have good intuitive understanding of syntax. I suspect the second type of people find learning foreign languages easy.
  • Many of the articles in the references below concern syntax.
  • References

    Creative Commons License

    This work is licensed under a Creative Commons Attribution-ShareAlike 2.5 License.


    Send to Kindle

    Syntax Trees in Mathematicians’ Brains

    Understanding the quadratic formula

    In my last post I wrote about how a student’s pattern recognition mechanism can go awry in applying the quadratic formula.

    The template for the quadratic formula says that the solution of a quadratic equation of the form ${ax^2+bx+c=0}$ is given by the formula

    $\displaystyle x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$

    When you ask students to solve ${a+bx+cx^2=0}$ some may write

    $\displaystyle x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$

    instead of

    $\displaystyle x=\frac{-b\pm\sqrt{b^2-4ac}}{2c}$

    That’s because they have memorized the template in terms of the letters ${a}$, ${b}$ and ${c}$ instead of in terms of their structural meaning — $ {a}$ is the coefficient of the quadratic term, ${c}$ is the constant term, etc.

    The problem occurs because there is a clash between the occurrences of the letters “a”, “b”, and “c” in the template and in the equation to solve. But maybe the confusion would occur anyway, just because of the ordering of the coefficients. As I asked in the previous post, what happens if students are asked to solve $ {3+5x+2x^2=0}$ after having learned the quadratic formula in terms of ${ax^2+bx+c=0}$? Some may make the same kind of mistake, getting ${x=-1}$ and ${x=-\frac{2}{3}}$ instead of $ {x=-1}$ and $ {x=-\frac{3}{2}}$. Has anyone ever investigated this sort of thing?

    People do pattern recognition remarkably well, but how they do it is mysterious. Just as mistakes in speech may give the linguist a clue as to how the brain processes language, students’ mistakes may tell us something about how pattern recognition works in parsing symbolic statements as well as perhaps suggesting ways to teach them the correct understanding of the quadratic formula.

    Syntactic Structure

    “Structural meaning” refers to the syntactic structure of a mathematical expression such as ${3+5x+2x^2}$. It can be represented as a tree:

    (1)

    This is more or less the way a program compiler or interpreter for some language would represent the polynomial. I believe it corresponds pretty well to the organization of the quadratic-polynomial parser in a mathematician’s brain. This is not surprising: The compiler writer would have to have in mind the correct understanding of how polynomials are evaluated in order to write a correct compiler.

    Linguists represent English sentences with syntax trees, too. This is a deep and complicated subject, but the kind of tree they would use to represent a sentence such as “My cousin saw a large ship” would look like this:

    Parsing by mathematicians

    Presumably a mathematician has constructed a parser that builds a structure in their brain corresponding to a quadratic polynomial using the same mechanisms that as a child they learned to parse sentences in their native language. The mathematician learned this mostly unconsciously, just as a child learns a language. In any case it shouldn’t be surprising that the mathematicians’s syntax tree for the polynomial is similar to the compiler’s.

    Students who are not yet skilled in algebra have presumably constructed incorrect syntax trees, just as young children do for their native language.

    Lots of theoretical work has been done on human parsing of natural language. Parsing mathematical symbolism to be compiled into a computer program is well understood. You can get a start on both of these by reading the Wikipedia articles on parsing and on syntax trees.

    There are papers on students’ misunderstandings of mathematical notation. Two articles I recently turned up in a Google search are:

    Both of these papers talk specifically about the syntax of mathematical expressions. I know I have read other such papers in the past, as well.

    What I have not found is any study of how the trained mathematician parses mathematical expression.

    For one thing, for my parsing of the expression $ {3+5x+2x^2}$, the branching is wrong in (1). I think of ${3+5x+2x^2}$ as “Take 3 and add $ {5x}$ to it and then add ${2x^2}$ to that”, which would require the shape of the tree to be like this:

    I am saying this from introspection, which is dangerous!

    Of course, a compiler may group it that way, too, although my dim recollection of the little bit I understand about compilers is that they tend to group it as in (1) because they read the expression from left to right.

    This difference in compiling is well-understood.  Another difference is that the expression could be compiled using addition as an operator on a list, in this case a list of length 3.  I don’t visualize quadratics that way but I certainly understand that it is equivalent to the tree in Diagram (1).  Maybe some mathematicians do think that way.

    But these observations indicate what might be learned about mathematicians’ understanding of mathematical expressions if linguists and mathematicians got together to study human parsing of expressions by trained mathematicians.

    Some educational constructivists argue against the idea that there is only one correct way to understand a mathematical expression.  To have many metaphors for thinking about math is great, but I believe we want uniformity of understanding of the symbolism, at least in the narrow sense of parsing, so that we can communicate dependably.  It would be really neat if we discovered deep differences in parsing among mathematicians.  It would also be neat if we discovered that mathematicians parsed in generally the same way!


    Send to Kindle

    Templates in mathematical practice

    This post is a first pass at what will eventually be a section of abstractmath.org. It’s time to get back to abstractmath; I have been neglecting it for a couple of years.

    What I say here is based mainly on my many years of teaching discrete mathematics at Case Western Reserve University in Cleveland and more recently at Metro State University in Saint Paul.

    Beginning abstract math

    College students typically get into abstract math at the beginning in such courses as linear algebra, discrete math and abstract algebra. Certain problems that come up in those early courses can be grouped together under the notion of (what I call) applying templates [note 0]. These are not the problems people usually think about concerning beginners in abstract math, of which the following is an incomplete list:

    The students’ problems discussed here concern understanding what a template is and how to apply it.

    Templates can be formulas, rules of inference, or mini-programs. I’ll talk about three examples here.

    The template for quadratic equations

    The solution of a real quadratic equation of the form {ax^2+bx+c=0} is given by the formula

    \displaystyle  x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}

    This is a template for finding the roots of the equations. It has subtleties.

    For example, the numerator is symmetric in {a} and {c} but the denominator isn’t. So sometimes I try to trick my students (warning them ahead of time that that’s what I’m trying to do) by asking for a formula for the solution of the equation {a+bx+cx^2=0}. The answer is

    \displaystyle x=\frac{-b\pm\sqrt{b^2-4ac}}{2c}

    I start writing it on the board, asking them to tell me what comes next. When we get to the denominator, often someone says “{2a}”.

    The template is telling you that the denominator is 2 times the coefficient of the square term. It is not telling you it is “{a}”. Using a template (in the sense I mean here) requires pattern matching, but in this particular example, the quadratic template has a shallow incorrect matching and a deeper correct matching. In detail, the shallow matching says “match the letters” and the deep matching says “match the position of the letters”.

    Most of the time the quadratic being matched has particular numbers instead of the same letters that the template has, so the trap I just described seldom occurs. But this makes me want to try a variation of the trick: Find the solution of {3+5x+2x^2=0}. Would some students match the textual position (getting {a=3}) instead of the functional position (getting {a=5})? [Note [0]). If they did they would get the solutions {(-1,-\frac{2}{3})} instead of {(-1,-\frac{3}{2})}.

    Substituting in algebraic expressions have other traps, too. What sorts of mistakes would students have solving {3x^2+b^2x-5=0}?

    Most students on the verge of abstract math don’t make mistakes with the quadratic formula that I have described. The thing about abstract math is that it uses more sophisticated templates

    • subject to conditions
    • with variations
    • with extra levels of abstraction

    The template for proof by induction

    This template gives a method of proof of a statement of the form {\forall{n}\mathcal{P}(n)}, where {\mathcal{P}} is a predicate (presumably containing {n} as a variable) and {n} varies over positive integers. The template says:

    Goal: Prove {\forall{n}\mathcal{P}(n)}.

    Method:

    • Prove {\mathcal{P}(1)}
    • For an arbitrary integer {n>1}, assume {\mathcal{P}(n)} and deduce {\mathcal{P}(n+1)}.

    For example, to prove {\forall n (2^n+1\geq n^2)} using the template, you have to prove that {2^2+1\geq  1^1}, and that for any {n>1}, if {2^n+1\geq n^2}, then {2^{n+1}+1\geq  (n+1)^2}. You come up with the need to prove these statements by substituting into the template. This template has several problems that the quadratic formula does not have.

    Variables of different types

    The variable {n} is of type integer and the variable {\mathcal{P}} is of type predicate [note 0]. Having to deal with several types of variables comes up already in multivariable calculus (vectors vs. numbers, cross product vs. numerical product, etc) and they multiply like rabbits in beginning abstract math classes. Students sometimes write things like “Let {\mathcal{P}=n+1}”. Multiple types is a big problem that math ed people don’t seem to discuss much (correct me if I am wrong).

    Free and bound

    The variable {n} occurs as a bound variable in the Goal and a free variable in the Method. This happens in this case because the induction step in the Method originates as the requirement to prove {\forall  n(\mathcal{P}(n)\rightarrow\mathcal{P}(n+1))}, but as I have presented it (which seems to be customary) I have translated this into a requirement based on modus ponens. This causes students problems, if they notice it. (“You are assuming what you want to prove!”) Many of them apparently go ahead and produce competent proofs without noticing the dual role of {n}. I say more power to them. I think.

    The template has variations

    • You can start the induction at other places.
    • You may have to have two starting points and a double induction hypothesis (for {n-1} and {n}). In fact, you will have to have two starting points, because it seems to be a Fundamental Law of Discrete Math Teaching that you have to talk about the Fibonacci function ad nauseam.
    • Then there is strong induction.

    It’s like you can go to the store and buy one template for quadratic equations, but you have to by a package of templates for induction, like highway engineers used to buy packages of plastic French curves to draw highway curves without discontinuous curvature.

    The template for row reduction

    I am running out of time and won’t go into as much detail on this one. Row reduction is an algorithm. If you write it up as a proper computer program there have to be all sorts of if-thens depending on what you are doing it for. For example if want solutions to the simultaneous equations

    2x+4y+z = 1
    x+2y = 0
    x+2y+4z = 5

    you must row reduce the matrix

    2 4 1 1
    1 2 0 0
    1 2 4 5

    (I haven’t yet figured out how to wrap this in parentheses) which gives you

    1 2 0 0
    0 0 1 0
    0 0 0 1

    This introduces another problem with templates: They come with conditions. In this case the condition is “a row of three 0s followed by a nonzero number means the equations have no solutions”. (There is another condition when there is a row of all 0’s.)

    It is very easy for the new student to get the calculation right but to never sit back and see what they have — which conditions apply or whatever.

    When you do math you have to repeatedly lean in and focus on the details and then lean back and see the Big Picture. This is something that has to be learned.

    What to do, what to do

    I have recently experimented with being explicit about templates, in particular going through examples of the use of a template after explicitly stating the template. It is too early to say how successful this is. But I want to point out that even though it might not help to be explicit with students about templates, the analysis in this post of a phenomenon that occurs in beginning abstract math courses

    • may still be accurate (or not), and
    • may help teachers teach such things if they are aware of the phenomenon, even if the students are not.

    Notes

    1. Many years ago, I heard someone use the word “template” in the way I am using it now, but I don’t recollect who it was. Applied mathematicians sometimes use it with a meaning similar to mine to refer to soft algorithms–recipes for computation that are not formal algorithms but close enough to be easily translated into a sufficiently high level computer language.
    2. In the formula {ax^2+bx+c}, the “{a}” has the first textual position but the functional position as the coefficient of the quadratic term. This name “functional position” has nothing to do with functions. Can someone suggest a different name that won’t confuse people?
    3. I am using “variable” the way logicians do. Mathematicians would not normally refer to “{\mathcal{P}}” as a variable.
    4. I didn’t say anything about how templates can involve extra layers of abstract.  That will have to wait.
    Send to Kindle