Tag Archives: philosophy of math

Thinking about abstract math

 

The abstraction cliff

In universities in the USA, a math major typically starts with calculus, followed by courses such as linear algebra, discrete math, or a special intro course for math majors (which may be taken simultaneously with calculus), then go on to abstract algebra, analysis, and other courses involving abstraction and proofs.

At this point, too many of them hit a wall; their grades drop and they change majors.  They had been getting good grades in high school and in calculus because they were strong in algebra and geometry, but the sudden increase in abstraction in the newer courses completely baffles them. I believe that one big difficulty is that they can't grasp how to think about abstract mathematical objects.  (See Reference [9] and note [a].)   They have fallen off the abstraction cliff.  We lose too many math majors this way. (Abstractmath.org is my major effort to address the problems math majors have during or after calculus.)

This post is a summary of the way I see how mathematicians and students think about math.  I will use it as a reference in later posts where I will write about how we can communicate these ways of thinking.

Concept Image

In 1981, Tall and Vinner  [5] introduced the notion of the concept image that a person has about a mathematical concept or object.   Their paper's abstract says

The concept image consists of all the cognitive structure in the individual's mind that is associated with a given concept. This may not be globally coherent and may have aspects which are quite different from the formal concept definition.

The concept image you may have of an abstract object generally contains many kinds of constituents:

  • visual images of the object
  • metaphors connecting the object to other concepts
  • descriptions of the object in mathematical English
  • descriptions and symbols of the object in the symbolic language of math
  • kinetic feelings concerning certain aspects of the object
  • how you calculate parameters of the object
  • how you prove particular statements about the object

This list is incomplete and the items overlap.  I will write in detail about these ideas later.

The name "concept image" is misleading [b]), so when I have written about them, I have called them metaphors or mental representations as well as concept images, for example in [3] and [4].

Abstract mathematical concepts

This is my take on the notion of concept image, which may be different from that of most researchers in math ed. It owes a lot to the ideas of Reuben Hersh [7], [8].

  • An abstract mathematical concept is represented physically in your brain by what I have called "modules" [1] (physical constituents or activities of the brain [c]).
  • The representation generally consists of many modules.  They correspond to the list of constituents of a concept image given above.  There is no assumption that all the modules are "correct".
  • This representation exists in a semi-public network of mathematicians' and students' brains. This network exercises (incomplete) control over your personal representation of the abstract structure by means of conversation with other mathematicians and reading books and papers.  In this sense, an abstract concept is a social object.  (This is the only point of view in the philosophy of math that I know of that contains any scientific content.)

Notes

[a]  Before you object that abstraction isn't the only thing they have trouble with, note that a proof is an abstract mathematical object. The written proof is a representation of the abstract structure of the proof.  Of course, proofs are a special kind of abstract structure that causes special problems for students.

[b] Cognitive science people use "image" to include nonvisual representations, but not everyone does.  Indeed, cognitive scientists use "metaphor" as well with a broader meaning than your high school English teacher.  A metaphor involves the cognitive merging of parts of two concepts (specifically with other parts not merged). See [6].

[c] Note that I am carefully not saying what the modules actually are — neurons, networks of neurons, events in the brain, etc.   From the point of view of teaching and understanding math, it doesn't matter what they are, only that they exist and live in a society where they get modified by memes  (ideas, attitudes, styles physically transmitted from brain to brain by speech, writing, nonverbal communication, appearance, and in other ways).

References

  1. Math and modules of the mind (previous post)
  2. Mathematical Concepts (previous post)
  3. Mental, physical and mathematical representations (previous post)
  4. Images and Metaphors (abstractmath.org)
  5. David Tall and Schlomo Vinner, Concept Image and Concept Definition in Mathematics with particular reference to limits and continuity, Journal Educational Studies in Mathematics, 12 (May, 1981), no. 2, 151–169.
  6. Conceptual metaphor (Wikipedia article).
  7. What is mathematics, really? by Reuben Hersh, Oxford University Press, 1999.  Read online at Questia.
  8. 18 Unconventional Essays on the Nature of Mathematics, by Reuben Hersh. Springer, 2005.
  9. Mathematical objects (abstractmath.org).

 

 

Send to Kindle

Thinking about mathematical objects revisited

How we think about X

It is notable that many questions posted at MathOverflow are like, “How should I think about X?”, where X can be any type of mathematical object (quotient group, scheme, fibration, cohomology and so on).  Some crotchety contributors to that group want the questions to be specific and well-defined, but “how do I think about…” questions  are in my opinion among the most interesting questions on the website.  (See note [a]).

Don’t confuse “How do I think about X” with “What is X really?” (pace Reuben Hersh).  The latter is a philosophical question.  As far as I am concerned, thinking about how to think about X is very important and needs lots of research by mathematicians, educators, and philosophers — for practical reasons: how you think about it helps you do it.   What it really is is no help and anyway no answer may exist.

Inert and eternal

The idea that mathematical objects should be thought of as  “inert” and “eternal”  has been around for awhile.  (Never mind whether they really are inert and eternal.)  I believe, and have said in the past [1], that thinking about them that way clears up a lot of confusion in newbies concerning logical inference.

  • That mathematical objects are “inert” means that the do not cause anything. They have no effect on the real world or on each other.
  • That they are “eternal” means they don’t change over time.

Naturally, a function (a mathematical object) can model change over time, and it can model causation, too, in that it can describe a process that starts in one state and achieves stasis in another state (that is just one way of relation functions to causation).  But when we want to prove something about a type of math object, our metaphorical understanding of them has to lose all its life and color and go dead, like the dry bones before Ezekiel started nagging them.

It’s only mathematical reasoning if it is about dead things

The effect on logical inference can be seen in the fact that “and” is a commutative logical operator. 

  • “x > 1 and x < 3″ means exactly the same thing as “x < 3 and x > 1″
  • “He picked up his umbrella and went outside” does not mean the same thing as “He went outside and picked up his umbrella”.

The most profound effect concerns logical implication.  “If  x > 1 then x > 0″ says nothing to suggest that x > 1 causes it to be the case that x > 0.  It is purely a statement about the inert truth sets of two predicates lying around the mathematical boneyard of objects:  The second set includes the first one.  This makes vacuous implication perfectly obvious.  (The number -1 lies in neither truth set and is irrelevant to the fact of inclusion).

Inert and eternal rethought

There are better metaphors than these.  The point about the number 3 is that you think about it as outside time. In the world where you think about 3 or any other mathematical object, all questions about time are meaningless.

  • In the sentence “3 is a prime”, we need a new tense in English like the tenses ancient (very ancient) Greek and Hebrew were supposed to have (perfect with gnomic meaning), where a fact is asserted without reference to time.
  • Since causation involves this happens, then this happens, all questions about causation are meaningless, too.  It is not true that 3 causes 6 to be composite, while being irrelevant to the fact that 35 is composite.

This single metaphor “outside time” thus can replace the two metaphors “inert” and “eternal” and (I think) shows that the latter two are really two aspects of the same thing.

Caveat

Thinking of math objects as outside time is a Good Thing when you are being rigorous, for example doing a proof.  The colorful, changing, full-of-life way of thinking of math that occurs when you say things like the statements below is vitally necessary for inspiring proofs and for understanding how to apply the mathematics.

  • The harmonic series goes to infinity in a very leisurely fashion.
  • A function is a machine — when you dump in a number it grinds away and spits out another number.
  • At zero, this function vanishes.

Acknowledgment

Thanks to Jody Azzouni for the italics (see [3]).

Notes

a.  Another interesting type of question  “in what setting does such and such a question (or proof) make sense?” .  An example is my question in [2].

References

1.  Proofs without dry bones

2. Where does the generic triangle live?

3. The revolution in technical exposition II.

Send to Kindle

How "math is logic" ruined math for a generation

Mark Meckes responded to my statement

But it seems to me that this sort of thinking has mostly resulted in people thinking philosophy of math is merely a matter of logic and set theory.  That point of view has been ruinous to the practice of math.

with this comment:

I may be misreading your analysis of the second straw man, but you seem to imply that “people thinking philosophy of math is merely a matter of logic and set theory” has done great damage to mathematics. I think that’s quite an overstatement. It means that in practice, mathematicians find philosophy of mathematics to be irrelevant and useless. Perhaps philosophers of mathematics could in principle have something to say that mathematicians would find helpful but in practice they don’t; however, we’re getting along quite well without their help.

On the other hand, maybe you only meant that people who think “philosophy of math is merely a matter of logic and set theory” are handicapped in their own ability to do mathematics. Again, I think most mathematicians get along fine just not thinking about philosophy.

Mark is right that at least this aspect of philosophy of math is irrelevant and useless to mathematicians.  But my remark that the attitude that “philosophy of math is merely a matter of logic and set theory” is ruinous to math was sloppy, it was not what I should have said.    I was thinking of a related phenomenon which was ruinous to math communication and teaching.

By the 1950’s many mathematicians adopted the attitude that all math is is theorem and proof.  Images, metaphors and the like were regarded as misleading and resulting in incorrect proofs.  (I am not going to get into how this attitude came about).     Teachers and colloquium lecturers suppressed intuitive insights and motivations in their talks and just stated the theorem and went through the proof.

I believe both expository and research papers were affected by this as well, but I would not be able to defend that with citations.

I was a math student 1959 through 1965.  My undergraduate calculus (and advanced calculus) teacher was a very good teacher but he was affected by this tendency.  He knew he had to give us intuitive insights but he would say things like “close the door” and “don’t tell anyone I said this” before he did.  His attitude seemed to be that that was not real math and was slightly shameful to talk about.  Most of my other undergrad teachers simply did not give us insights.

In graduate school I had courses in Lie Algebra and Mathematical Logic from the same teacher.   He was excellent at giving us theorem-proof lectures, much better than most teachers, but he never gave us any geometric insights into Lie Algebra (I never heard him say anything about differential equations!) or any idea of the significance of mathematical logic.  We went through Killing’s classification theorem and Gödel’s incompleteness theorem in a very thorough way and I came out of his courses pleased with my understanding of the subject matter.  But I had no idea what either one of them had to do with any other part of math.

I had another teacher for several courses in algebra and various levels of number theory.   He was not much for insights, metaphors, etc, but he did do well in explaining how you come up with a proof.  My teacher in point set topology was absolutely awful and turned me off the Moore Method forever.   The Moore method seems to be based on: don’t give the student any insights whatever. I have to say that one of my fellow students thought the Moore method was the best thing since sliced bread and went on to get a degree from this teacher.

These dismal years in math teaching lasted through the seventies and perhaps into the eighties.  Apparently now younger professors are much more into insights, images and metaphors and to some extent into pointing out connections with the rest of math and science.  Since I have been retired since 1999 I don’t have much exposure to the newer generation and I am not sure how thoroughly things have changed.

One noticeable phenomenon was that category theorists (I got into category theory in the mid seventies) were very assiduous in lectures and to some extent in papers in giving motivation and insight.  It may be that attitudes varied a lot between different disciplines.

This Dark Ages of math teaching was one of the motivations for abstractmath.org.  My belief is that not only should we give the students insights, images and metaphors to think about objects, and so on, but that we should be upfront about it:   Tell them what we are doing (don’t just mutter the word “intuitive”) and point out that these insights are necessary for understanding but are dangerous when used in proofs.  Tell them these things with examples. In every class.

My other main motivation for abstractmath.org was the way math language causes difficulties.  But that is another story.

Send to Kindle

Stances

Philosophy

With the help of some colleagues, I am beginning to understand why I am bothered by most discussions of the philosophy of math.  Philosophers have a stance. Examples:

  • "Math objects are real but not physical."
  • "Mathematics consists of statements" (deducible from axioms, for example).
  • "Mathematics consists of physical activity in the brain."

And so on.  They defend their stances, and as a result of arguments occasionally refine them.  Or even change them radically.  The second part of this post talks about these three stances in a little more detail.

I have a different stance:  I want to gain a scientific understanding of the craft of doing math.

Given this stance, I don't understand how the example statements above help a scientific understanding.    Why would making a proclamation (taking a stance) whose meaning needs to be endlessly dissected help you know what math really is?

In fact if you think about (and argue with others about) any of the three, you can (and people have) come up with lots of subtle observations.  Now, some of those observations may in fact give you a starting point towards a scientific investigation, so taking stances may have some useful results.  But why not start with the specific observations?

Observe yourself and others doing math, noticing

  • specific behaviors that give you forward progress,
  • specific confusions that inhibit progress,
  • unwritten rules (good and bad) that you follow without noticing them,
  • intricate interactions beneath the surface of discourse about math,

and so on.  This may enable you to come up with scientifically testable claims about what happens when doing math.  A lot of work of this sort has already been done, and it is difficult work since much of doing math goes on in our brains and in our interactions with other mathematicians (among other things) without anyone being aware of it.   But it is well worth doing.

But you may object:  "I don't want to take your stance! I want to know what math really is."  Well, can we reliably find out anything about math in any way other than through scientific investigation?   [The preceding statement is not a stance, it is a rhetorical question.]

Analysis of three straw men

The three stances at the beginning of the post are not the only possible ones, so you may object that I have come up with some straw men that are easy to ridicule.  OK, come up with another stance and I will analyze it as well!

"I think math objects are real but not physical."  There are lots of ways of defining "real", but you have to define it in order to investigate the question scientifically.  My favorite is "they have consistent and repeated behavior" like physical objects, and this behavior causes specific modules in the brain that deal with physical objects to deal with math objects in an efficient way.  If you write two or three paragraphs about consistent and repeated behavior that make testable claims then you have a start towards scientifically understanding something about math.   But why talk about "real"?  Isn't "consistent and repeated behavior" more explicit?  (Making it more explicit it makes it easier to find fault with it and modify it or throw it out.  That's science.)

"Mathematics consists of statements".  Same kind of remark:  Define "statement".  (A recursively defined string of symbols?  An assertion with specific properties?)  Philosophers have thought about this a bunch.  So have logicians and computer scientists.  The concept of statement has really deep issues.  You can't approach the question of whether math "is" a bunch of statements until you get into those issues.  Of course, when you do you may come up with specific testable claims that are worth looking into.   But it seems to me that this sort of thinking has mostly resulted in people thinking philosophy of math is merely a matter of logic and set theory.  That point of view has been ruinous to the practice of math.

"Mathematics consists of physical patterns in the brain."   Well, physical events in the brain are certainly associated with doing math, and they are worth finding out about.  (Some progress has already been made.)  But what good is the proclamation: "Math consists of activity in the brain".   What does that mean?  Math "is" math texts and mathematical conversations as well as activity in the brain.   If you want to claim that the brain activity is somehow primary, that may be defendable, but you have to say how it is primary and what its relations are with written and oral discourse.  If you succeed in doing that, the statement "Math consists of activity in the brain" becomes superfluous.

Send to Kindle

Math and the Modules of the Mind

I have written (references below) about the way we seem to think about math objects using our mind’s mechanisms for thinking about physical objects. What I want to do in this post is to establish a vocabulary for talking about these ideas that is carefully enough defined that what I say presupposes as little as possible about how our mind behaves. (But it does presuppose some things.) This is roughly like Gregor Mendel’s formulation of the laws of inheritance, which gave precise descriptions of how characteristics were inherited while saying nothing at all about the mechanism.

I will use module as a name for the systems in the mind that perform various tasks.

Examples of modules

a) We have an “I’ve seen this before module” that I talked about here.

b) When we see a table, our mind has a module that recognizes it as a table, a module that notes that it is nearby, and in particular a module that notes that it is a physical object. The physical-object module is connected to many other modules, including for example expectations of what we would feel if we touched it, and in particular connections to our language-producing module that has us talk about it in a certain way (a table, the table, my table, and so on.)

c) We also have a module for abstract objects. Abstract objects are discussed in detail in the math objects chapter of abstractmath.org. A schedule is an abstract object, and so is the month of November. They are not mathematical objects because they affect people and change over time. (More about this here.) For example, the statement “it is now November” is true sometimes and false sometimes. Abstract objects are also not abstractions, like “beauty” and “love” which are not thought of as objects.

d) We talk about numbers in some ways like we talk about physical objects. We say “3 is a number”. We say “I am thinking of the only even prime”. But if we point and say, “Look, there is a 3”, we know that we have shifted ground and are talking about, not the number 3, but about a physical representation of the number 3. That’s because numbers trigger our abstract object module and our math object module, but not our physical object module. (Back and fill time: if you are not a mathematician, your mind may not have a math object module. People are not all the same.)

More about modules

My first choice for a name for these systems would have been object, as in object-oriented programming, but this discussion has too many things called objects already. Now let’s clear up some possible misconceptions:

e) I am talking about a module of the mind. My best guess would be that the mind is a function of the brain and its relationship with the world, but I am not presuppposing that. Whatever the mind is, it obviously has a system for recognizing that something is a physical object or a color or a thought or whatever. (Not all the modules are recognizers; some of them initiate actions or feelings.)

f) It seems likely that each module is a neuron together with its connections to other neurons, with some connections stronger than others (our concepts are fuzzy, not Boolean). But maybe a module is many neurons working together. Or maybe it is like a module in a computer program, that is instantiated anew each time it is called, so that a module does not have a fixed place in the brain. But it doesn’t matter. A module is whatever it is that carries out a particular function. Something has to carry out such functions.

Math objects

The modules in a mathematician’s mind that deal with math objects use some of the same machinery that the mind uses for physical objects.

g) You can do things to them. You can add two numbers. You can evaluate a function at an input. You can take the derivative of some functions.

h) You can discover properties of some kinds of math objects. (Every differentiable function is continuous.)

i) Names of some math objects are treated as proper nouns (such as “42”) and others as common nouns (such as “a prime”.)

I maintain that these phenomena are evidence that the systems in your mind for thinking about physical objects are sometimes useful for thinking about math objects.

Different ways of thinking about math objects.

j) You can construct a mathematical object that is new to you. You may feel that you invented it, that it didn’t exist before you created it. That’s your I just created this module acting. If you feel this way, you may think math is constantly evolving.

k) Many mathematicians feel that math objects are all already there. That’s a module that recognizes that math objects don't come into or go out of existence.

l) When you are trying to understand math objects you use all sorts of physical representations (graphs, diagrams) and mental representations (metaphors, images). You say things like, “This cubic curve goes up to positive infinity in the negative direction” and “This function vanishes at 2” and “Think of a Möbius strip as the unit square with two parallel sides identified in the reverse direction.”

m) When you are trying to prove something about math objects mathematicians generally think of math objects as eternal and inert (not affecting anything else). For example, you replace “the slope of the secant gets closer and closer to the slope of the tangent” by an epsilon-delta argument in which everything you talk about is treated as if it is unchanging and permanent. (See my discussion of the rigorous view.)

Consequences

When you have a feeling of déjà vu, it is because something has triggered your “I have seen this before” module (see (a)). It does not mean you have seen it before.

When you say “the number 3” is odd, that is a convenient way of talking about it (see (d) above), but it doesn’t mean that there is really only one number three.

If you say the function x^2 takes 3 to 9 it doesn’t have physical consequences like “Take me to the bank” might have. You are using your transport module but in a pretend way (you are using the pretend module!).

When you think you have constructed a new math object (see (j)), your mental modules leave you feeling that the object didn’t exist before. When you think you have discovered a new math object (see (k)), your modules leave you feeling that it did exist before. Neither of those feelings say anything about reality, and you can even have both feelings at the same time.

When you think about math objects as eternal and inert (see (m)) you are using your eternal and inert modules in a pretend way. This does not constitute an assertion that they are eternal and inert.

Is this philosophy?

My descriptions of how we think about math are testable claims about the behavior of our mind, expressed in terms of modules whose behavior I (partially) specify but whose nature I don’t specify. Just as Mendel’s Laws turned out to be explained by the real behavior of chromosomes under meiosis, the phenomena I describe may someday turn out to be explained by whatever instantiation the modules actually have – except for those phenomena that I have described wrongly, of course – that is what “testable” means!

So what I am doing is science, not philosophy, right?

Now my metaphor-producing module presents the familiar picture of philosophy and science as being adjacent countries, with science intermittently taking over pieces of philosophy’s territory…

Links to my other articles in this thread

Math objects in abstractmath.org
Mathematical objects are “out there”?
Neurons and math
A scientific view of mathematics (has many references to what other people have said about math objects)
Constructivism and Platonism

Send to Kindle