Tag Archives: pattern recognition

A very early satori that occurs with beginning abstract math students

In the previous post Pattern recognition and me, I wrote about how much I enjoyed sudden flashes of understanding that were caused by my recognizing a pattern (or learning about a pattern). I have had several such, shall we say, Thrills in learning about math and doing research in math. This post is about a very early thrill I had when I first started studying abstract algebra. As is my wont, I will make various pronouncements about what these mean for teaching and understanding math.


Early in any undergraduate course involving group theory, you learn about cosets.

Basic facts about cosets

  1. Every subgroup of a group generates a set of left cosets and a set of right cosets.
  2. If $H$ is a subgroup of $G$ and $a$ and $b$ are elements of $G$, then $a$ and $b$ are in the same left coset of $H$ if and only if $a^{-1}b\in H$. They are in the same right coset of $H$ if and only if $ab^{-1}\in H$.
  3. Alternative definition: $a$ and $b$ are in the same left coset of $H$ if $a=bh$ for some $h\in H$ and are in the same right coset of $H$ if $a=hb$ for some $h\in H$
  4. One of the (left or right) cosets of $H$ is $H$ itself.
  5. The relations
    $a\underset{L}\sim b$ if and only if $a^{-1}b\in H$


    $a\underset{R}\sim b$ if and only if $ab^{-1}\in H$

    are equivalence relations.

  6. It follows from (5) that each of the set of left cosets of $H$ and the set of right cosets of $H$ is a partition of $G$.
  7. By definition, $H$ is a normal subgroup of $G$ if the two sets of cosets coincide.
  8. The index of a subgroup in a group is the cardinal number of (left or right) cosets the subgroup has.

Elementary proofs in group theory

In the course, you will be asked to prove some of the interrelationships between (2) through (5) using just the definitions of group and subgroup. The teacher assigns these exercises to train the students in the elementary algebra of elements of groups.


  1. If $a=bh$ for some $h\in H$, then $b=ah’$ for some $h’\in H$. Proof: If $a=bh$, then $ah^{-1}=(bh)h^{-1}=b(hh^{-1})=b$.
  2. If $a^{-1}b\in H$, then $b=ah$ for some $h\in H$. Proof: $b=a(a^{-1}b)$.
  3. The relation “$\underset{L}\sim$” is transitive. Proof: Let $a^{-1}b\in H$ and $b^{-1}c\in H$. Then $a^{-1}c=a^{-1}bb^{-1}c$ is the product of two elements of $H$ and so is in $H$.
Miscellaneous remarks about the examples
  • Which exercises are used depends on what is taken as definition of coset.
  • In proving Exercise 2 at the board, the instructor might write “Proof: $b=a(a^{-1}b)$” on the board and the point to the expression “$a^{-1}b$” and say, “$a^{-1}b$ is in $H$!”
  • I wrote “$a^{-1}c=a^{-1}bb^{-1}c$” in Exercise 3. That will result in some brave student asking, “How on earth did you think of inserting $bb^{-1}$ like that?” The only reasonable answer is: “This is a trick that often helps in dealing with group elements, so keep it in mind.” See Rabbits.
  • That expression “$a^{-1}c=a^{-1}bb^{-1}c$” doesn’t explicitly mention that it uses associativity. That, too, might cause pointing at the board.
  • Pointing at the board is one thing you can do in a video presentation that you can’t do in a text. But in watching a video, it is harder to flip back to look at something done earlier. Flipping is easier to do if the video is short.
  • The first sentence of the proof of Exercise 3 is, “Let $a^{-1}b\in H$ and $b^{-1}c\in H$.” This uses rewrite according to the definition. One hopes that beginning group theory students already know about rewrite according to the definition. But my experience is that there will be some who don’t automatically do it.
  • in beginning abstract math courses, very few teachers
    tell students about rewrite according to the definition. Why not?

  • An excellent exercise for the students that would require more than short algebraic calculations would be:
    • Discuss which of the two definitions of left coset embedded in (2), (3), (5) and (6) is preferable.
    • Show in detail how it is equivalent to the other definition.

A theorem

In the undergraduate course, you will almost certainly be asked to prove this theorem:

A subgroup $H$ of index $2$ of a group $G$ is normal in $G$.

Proving the theorem

In trying to prove this, a student may fiddle around with the definition of left and right coset for awhile using elementary manipulations of group elements as illustrated above. Then a lightbulb appears:

In the 1980’s or earlier a well known computer scientist wrote to me that something I had written gave him a satori. I was flattered, but I had to look up “satori”.

If the subgroup has index $2$ then there are two left cosets and two right cosets. One of the left cosets and one of the right cosets must be $H$ itself. In that case the left coset must be the complement of $H$ and so must the right coset. So those two cosets must be the same set! So the $H$ is normal in $G$.

This is one of the earlier cases of sudden pattern recognition that occurs among students of abstract math. Its main attraction for me is that suddenly after a bunch of algebraic calculations (enough to determine that the cosets form a partition) you get the fact that the left cosets are the same as the right cosets by a purely conceptual observation with no computation at all.

This proof raises a question:

Why isn’t this point immediately obvious to students?

I have to admit that it was not immediately obvious to me. However, before I thought about it much someone told me how to do it. So I was denied the Thrill of figuring this out myself. Nevertheless I thought the solution was, shall we say, cute, and so had a little thrill.

A story about how the light bulb appears

In doing exercises like those above, the student has become accustomed to using algebraic manipulation to prove things about groups. They naturally start doing such calculations to prove this theorem. They presevere for awhile…

Scenario I

Some students may be in the habit of abandoning their calculations, getting up to walk around, and trying to find other points of view.

  1. They think: What else do I know besides the definitions of cosets?
  2. Well, the cosets form a partition of the group.
  3. So they draw a picture of two boxes for the left cosets and two boxes for the right cosets, marking one box in each as being the subgroup $H$.
  4. If they have a sufficiently clear picture in their head of how a partition behaves, it dawns on them that the other two boxes have to be the same.
Remarks about Scenario I
  • Not many students at the earliest level of abstract math ever take a break and walk around with the intent of having another approach come to mind. Those who do Will Go Far. Teachers should encourage this practice. I need to push this in abstractmath.org.
  • In good weather, David Hilbert would stand outside at a shelf doing math or writing it up. Every once in awhile he would stop for awhile and work in his garden. The breaks no doubt helped. So did standing up, I bet. (I don’t remember where I read this.)
  • This scenario would take place only if the students have a clear understanding of what a partition is. I suspect that often the first place they see the connection between equivalence relations and partitions is in a hasty introduction at the beginning of a group theory or abstract algebra course, so the understanding has not had long to sink in.

Scenario II

Some students continue to calculate…

  1. They might say, suppose $a$ is not in $H$. Then it is in the other left coset, namely $aH$.
  2. Now suppose $a$ is not in the “other” right coset, the one that is not $H$. But there are only two right cosets, so $a$ must be in $H$.
  3. But that contradicts the first calculation I made, so the only possibility left is that $a$ is in the right coset $Ha$. So $aH\subseteq Ha$.
  4. Aha! But then I can use the same argument the other way around, getting $Ha\subseteq aH$.
  5. So it must be that $aH=Ha$. Aha! …indeed.
Remarks about Scenario 2
  • In step (2), the student is starting a proof by contradiction. Many beginning abstract math students are not savvy enough to do this.
  • Step (4) involves recognizing that an argument has a dual. Abstractmath.org does not mention dual arguments and I can’t remember emphasizing the idea to my classes. Tsk.
  • Scenario 2 involves the student continuing algebraic calculations till the lightbulb strikes. The lightbulb could also occur in other places in the calculation.


Send to Kindle

Pattern recognition and me

Recently, I revised the abstractmath.org article on pattern recognition. Doing that that prompted me to write about my own experiences with patterns. Recognizing patterns is something that has always delighted me: it is more of a big deal for me than it does for many other people. That, I believe, is what led me into doing research in math.

I have had several experiences with déjà vu, which is the result of pattern recognition with one pattern hidden. That will be a separate post. I expect to post about my experiences in recognizing patterns in math as well.

Patterns in language

As a teenager I was a page in the Savannah Public Library. There I discovered grammars for many languages. The grammars of other languages are astonishingly different from each other and are full of obscurities that I love to detect. Until I went to college, I was the only person I knew who read grammars for fun.

I am using the word “grammar” in the sense that linguists use it: patterns in our speech and writing, mostly unnoticed, that help express what we want to say)

The word “grammar” is also used to mean rules laid down by the ruling classes about phrases like “between you and I” and the uses of “whom”. Such rules primarily divide the underprivileged from the privileged, and many will disappear when the older members of the privileged class die (but they will think of new ones).

Grammar-induced glee


I got pretty good at reading and speaking Russian when I was a student (1959-62), but most of it has disappeared. In 1990, we hosted a Russian cello student with the Soviet-American Youth Orchestra for a couple of days. I could hardly say anything to him. One time he noticed one of our cats and said “кошка”, to which I replied “два кошки” (“two cats”). He responded by correcting me: “две кошки”. Then I remembered that the word for “two” in Russian is the only word in the language that distinguishes gender in the plural. I excitedly went around telling people about this until I realized that no one cared.


Recently I visited a display about the Maya at the Minnesota Science Museum that had all its posters in English and Spanish. I discovered a past subjunctive in one of the Spanish texts. That was exciting, but I had no one to be excited with.

The preceding paragraph is an example of a Pity Play.

Just the other day our choir learned a piece for Christmas with Spanish words. It had three lines in a row ending in a past subjunctive. (It is in rhyming triples and if you use all first conjugation verbs they rhyme.) Such excitement.


During the Cold War, I spent 18 months at İncirlik Air Base in Turkey. Turkish is a wonderful language for us geeks, very complicated yet most everything is regular. Like a computer language.

I didn’t know about computer languages during the Cold War, although they were just beginning to be used. I did work on a “computer” that you programmed by plugging cables into holes in various ways.

In Turkish, to modify a noun by a noun, you add an ending to the second noun. “İş Bankası” (no dot over the i) means “business bank”. (We would say “commercial bank”.) “İş” means “business” and “bank” by itself is “banka”. Do you think this is a lovably odd pattern? Well I do. But that’s the way I am.

A spate of spit

We live a couple blocks from Minnehaha Falls in Minneapolis. Last June the river flooded quite furiously and I went down to photograph it. I thought to my self, the river is in full spate. I wondered if the word “spate” came from the same IE root as the word “spit”. I got all excited and went home and looked it up. (No conclusion –it looks like it might be but there is no citation that proves it). Do you know anyone who gets excited about etymology?

Secret patterns in nature

All around us there are natural patterns that people don’t know about.

Cedars in Kentucky

For many years, we occasionally drove back and forth between Cleveland (where we lived) and Atlanta (where I had many relatives). We often stopped in Kentucky, where Jane grew up. It delighted me to drive by abandoned fields in Kentucky where cedars were colonizing. (They are “red cedars,” which are really junipers, but the name “cedar” is universal in the American midwest.)

What delighted me was that I knew a secret pattern: The presence of cedars means that the soil is over limestone. There is a large region including much of Kentucky and southern Indiana that lies over limestone underneath.

That gives me another secret: When you look closely at limestone blocks in a building in Bloomington, Indiana, you can see fossils. (It is better if the block is not polished, which unfortunately the University of Indiana buildings mostly are.) Not many people care about things like this.

The bump on Georgia

The first piece of pattern recognition that I remember was noticing that some states had “bumps”. This resulted in a confusing conversation with my mother. See Why Georgia has a bump.

Maybe soon I will write about why some states have panhandles, including the New England state that has a tiny panhandle that almost no one knows about.

Minnesota river

We live in Minneapolis now and occasionally drive over the Mendota Bridge, which crosses the Minnesota River. That river is medium sized, although it is a river, unlike Minnehaha Creek. But the Minnesota River Valley is a huge wide valley completely out of proportion with its river. This peculiarity hides a Secret Story that even many Minnesotans don’t know about.

The Minnesota River starts in western Minnesota and flows south and east until it runs into the Mississippi River. The source of the Red River is a few miles north of the source of the Minnesota. It flows north, becoming the boundary with North Dakota and going by Fargo and through Winnipeg and then flows into Lake Winnipeg. Thousands of years ago, all of the Red River was part of the Minnesota River and flowed south, bringing huge amounts of meltwater from the glaciers. That is what made the big valley. Eventually the glaciers receded far enough that the northern part of the river changed direction and started flowing north, leaving the Minnesota River a respectable medium sized river in a giant valley.

The Mendota Bridge is also one of the few places in the area where you can see the skyscrapers of Minneapolis and of St Paul simultaneously.


Baroque music

I love baroque music because of patterns such as fugues, which I understood, and the harmony it uses, which I still don’t understand. When I was 10 years old I had already detected its different harmony and asked my music teacher about it. She waved her hands and declaimed, “I don’t understand Bach.” (She was given to proclamations. Once she said, “I am never going out of the State of Georgia again because in Virginia they put mayonnaise on their hamburgers!”)

Some baroque music uses a ground bass, which floored me when I first heard it. I went on a rampage looking for records of chaconnes and passacaglias. Then I discovered early rock music (Beatles, Doors) and figured out that they sometimes used a ground bass too. That is one of the major attractions of rock music for me, along with its patterns of harmony.

Shape note music

Some shape note tunes (for example, Villulia), as well as some early rock music, has a funny hollow sound that sounds Asian to me. I delight in secretly knowing why: They use parallel fifths.

The Beatles have one song (I have forgotten which) that had a tune which in one place had three or four beats in a row that were sung on the same pitch — except once, when the (third I think) beat was raised a fourth. I fell in love with that and excitedly pointed it out to people. They looked at me funny. Later on, I found several shape note tunes that have that same pattern.


Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 2.5 License.

Send to Kindle

Pattern recognition in understanding math

Abstract patterns

This post is a revision of the article on pattern recognition in abstractmath.org.

When you do math, you must recognize abstract patterns that occur in

  • Symbolic expressions
  • Geometric figures
  • Relations between different kinds of math structures.
  • Your own mental representations of mathematical objects

This happens in high school algebra and in calculus, not just in the higher levels of abstract math.


Most of these examples are revisited in the section called Laws and Constraints.

At most

For real numbers $x$ and $y$, the phrase “$x$ is at most $y$” means by definition $x\le y$. To understand this definition requires recognizing the pattern “$x$ is at most $y$” no matter what expressions occur in place of $x$ and $y$, as long as they evaluate to real numbers.


  • “$\sin x$ is at most $1$” means that $\sin x\le 1$. This happens to be true for all real $x$.
  • “$3$ is at most $7$” means that $3\leq7$. You may think that “$3$ is at most $7$” is a silly thing to say, but it nevertheless means that $3\leq7$ and so is a correct statement.
  • “$x^2+(y-1)^2$ is at most $5$” means that
    $x^2+(y-1)^2\leq5$. This is true for some pairs $(x,y)$ and false for others, so it is a constraint. It defines the disk below:

The product rule for derivatives

The product rule for differentiable functions $f$ and $g$ tells you that the derivative of $f(x)g(x)$ is \[f'(x)\,g(x)+f(x)\,g'(x)\]


You recognize that the expression ${{x}^{2}}\sin x$ fits the pattern $f(x)g(x)$ with $f(x)={{x}^{2}}$ and $g(x)=\sin x$. Therefore you know that the derivative of ${{x}^{2}}\,\sin x$ is \[2x\sin x+{{x}^{2}}\cos x\]

The quadratic formula

The quadratic formula for the solutions of an equation of the form $a{{x}^{2}}+bx+c=0$ is usually given as\[r=\frac{-b\pm


If you are asked for the roots of $3{{x}^{2}}-2x-1=0$, you recognize that the polynomial on the left fits the pattern $a{{x}^{2}}+bx+c$ with

  • $a\leftarrow3$ (“$a$ replaced by $3$”)
  • $b\leftarrow-2$
  • and $c\leftarrow-1$.

substituting those values in the quadratic formula gives you the roots $-1/3$ and $1$.

Difficulties with the quadratic formula

A little problem

The quadratic formula is easy to use but it can still cause pattern recognition problems. Suppose you are asked to find the solutions of $3{{x}^{2}}-7=0$. Of course you can do this by simple algebra — but pretend that the first thing you thought of was using the quadratic formula.

  • Then you got upset because you have to apply it to $a{{x}^{2}}+bx+c$
  • and $3{{x}^{2}}-7$ has only two terms
  • but $a{{x}^{2}}+bx+c$ has three terms…
  • (Help!)
  • Do Not Be Anguished:
  • Write
    $3{{x}^{2}}-7$ as $3{{x}^{2}}+0\cdot x-7$, so $a=3$, $b=0$ and $c=-7$.
  • Then put those values into the quadratic formula and you get $x=\pm \sqrt{\frac{7}{3}}$.   
  • This is an example of the following useful principle:

    Write zero cleverly.

    I suspect that most people reading this would not have had the problem with $3{{x}^{2}}-7$ that I have just described. But before you get all insulted, remember:

    The thing about really easy examples is that they give you the point without getting you lost in some complicated stuff you don’t understand very well.

    A fiendisher problem

      Even college students may have trouble with the following problem (I know because I have tried it on them):

    What are the solutions of the equation $a+bx+c{{x}^{2}}=0$?

    The answer



    is wrong. The correct answer is


    When you remember a pattern with particular letters in it and an example has some of the same letters in it, make sure they match the pattern!

    The substitution rule for integration

    The chain rule says that the derivative of a function of the form $f(g(x))$ is $f'(g(x))g'(x)$. From this you get the substitution rule for finding indefinite integrals:



    To find $\int{2x\,\cos
    ({{x}^{2}})\,dx}$, you recognize that you can take $f(x)=\sin x$and $g(x)={{x}^{2}}$ in the formula, getting \[\int{2x\,\cos ({{x}^{2}})\,dx}=\sin ({{x}^{2}})\]    Note that in the way I wrote the integral, the functions occur in the opposite order from the pattern. That kind of thing happens a lot.

    Laws and constraints

    • The statement “$(x+1)^2=x^2+2x+1$” is a pattern that is true for all numbers $x$. $3^2=2^2+2\times2+1$ and $(-2)^2=(-1)^2+2\times(-1)+1$, and so on. Such a pattern is a universal assertion, so it is a theorem. When the statement is an equation, as in this case, it is also called a law.
    • The statement “$\sin x\leq 1$” is also true for all $x$, and so is a theorem.
    • The statement “$x^2+(y-1)^2$ is at most $5$” is true for some real numbers and not others, so it is not a theorem, although it is a constraint.
    • The quadratic formula says that:

      The solutions of an equation
      of the form $a{{x}^{2}}+bx+c=0$ is
      given by\[r=\frac{-b\pm

      This is true for all complex numbers $a$, $b$, $c$.
      The $x$ in the equation is not a free variable, but a “variable to be solved for” and does not appear in the quadratic formula. Theorems like the quadratic formula are usually called “formulas” rather than “laws”.

    • The product rule for derivatives

      The derivative of $f(x)g(x)$ is $f'(x)\,g(x)+f(x)\,g'(x)$

      is true for all differentiable functions $f$ and $g$. That means it is true for both of these choices of $f$ and $g$:

      • $f(x)=x$ and $g(x)=x\sin x$
      • $f(x)=x^2$ and $g(x)=\sin x$

      But both choices of $f$ and $g$ refer to the same function $x^2\sin x$, so if you apply the product rule in either case you should get the same answer. (Try it).

    Some bothersome types of pattern recognition

    Dependence on conventions

    Definition: A quadratic polynomial in $x$is an expression of the form $a{{x}^{2}}+bx+c$.   


    • $-5{{x}^{2}}+32x-5$ is a quadratic polynomial: You have to recognize that it fits the pattern in the definition by writing it as $(-5){{x}^{2}}+32x+(-5)$
    • So is ${{x}^{2}}-1$: You have to recognize that it fits the definition by writing it as ${{x}^{2}}+0\cdot x+(-1)$ (I wrote zero cleverly).

    Some authors would just say, “A quadratic polynomial is an expression of the form $a{{x}^{2}}+bx+c$” leaving you to deduce from conventions on variables that it is a polynomial in $x$ instead of in $a$ (for example).

    Note also that I have deliberately not mentioned what sorts of numbers $a$, $b$, $c$ and $x$ are. The authors may assume that you know they are using real numbers.

    An expression as an instance of substitution

    One particular type of pattern recognition that comes up all the time in math is recognizing that a given expression is an instance of a substitution into a known expression.


    Students are sometimes baffled when a proof uses the fact that ${{2}^{n}}+{{2}^{n}}={{2}^{n+1}}$ for positive integers $n$. This requires the recognition of the patterns $x+x=2x$ and $2\cdot

    Similarly ${{3}^{n}}+{{3}^{n}}+{{3}^{n}}={{3}^{n+1}}$.


    The assertion

    \[{{x}^{2}}+{{y}^{2}}\ge 0\ \ \ \ \ \text{(1)}\]

    has as a special case

    0\ \ \ \ \ \text{(2)}\]

    which involves the substitutions $x\leftarrow -{{x}^{2}}-{{y}^{2}}$ and $y\leftarrow

    • If you see (2) in a text and the author blithely says it is “never negative”, that is because it is of the form \[{{x}^{2}}+{{y}^{2}}\ge 0\] with certain expressions substituted for $x$ and $y$. (See substitution and The only axiom for algebra.)
    • The fact that there are minus signs in (2) and that $x$ and $y$ play different roles in (1) and in (2) are red herrings. See ratchet effect and variable clash.
    • Most people with some experience in algebra would see quickly that (2) is correct by using chunking. They would visualize (2) as

      This shows that in many cases

      chunking is a psychological inverse to substitution

    • Note that when you make these substitutions you have to insert appropriate parentheses (more here). After you make the substitution, the expression of course can be simplified a whole bunch, to


    • A common cause of error in doing this (a mistake I make sometimes) is to try to substitute and simplify at the same time. If the situation is complicated, it is best to

      substitute as literally as possible and then simplify

    Integration by Parts

    The rule for integration by parts says that


    Suppose you need to find $\int{\log x\,dx}$.(In abstractmath.org, “log” means ${{\log }_{e}}$).  Then we can recognize this integral as having the pattern for the left side of the parts formula with $f(x)=1$ and $g(x)=\log \,x$. Therefore

    \[\int{\log x\,dx=x\log x-\int{\frac{1}{x}dx=x\log \,x-x+c}}\]

    How on earth did I think to recognize $\log x$ as $1\cdot \log x$??  
    Well, to tell the truth because some nerdy guy (perhaps I should say some other nerdy guy) clued me in when I was taking freshman calculus. Since then I have used this device lots of times without someone telling me — but not the first time.

    This is an example of another really useful principle:

    Write $1$ cleverly.

    Two different substitutions give the same expression

    Some proofs involve recognizing that a symbolic expression or figure fits a pattern in two different ways. This is illustrated by the next two examples. (See also the remark about the product rule above.) I have seen students flummoxed by Example ID, and Example ISO is a proof that is supposed to have flummoxed medieval geometry students.

    Example ID

    Definition: In a set with an associative binary operation and an identity element $e$, an element $y$ is the inverse of an element $x$ if

    \[xy=e\ \ \ \ \text{and}\ \ \ \ yx=e \ \ \ \ (1)\]

    In this situation, it is easy to see that $x$ has only one inverse: If $xy=e$ and $xz=e$ and $yx=e$ and $zx=e$, then \[y=ey=(zx)y=z(xy)=ze=z\]

    Theorem: ${{({{x}^{-1}})}^{-1}}=x$.

    Proof: I am given that ${{x}^{-1}}$ is the inverse of $x$, By definition, this means that

    \[x{{x}^{-1}}=e\ \ \ \text{and}\ \ \ {{x}^{-1}}x=e \ \ \ \ (2)\]

    To prove the theorem, I must show that $x$ is the inverse of ${{x}^{-1}}$. Because $x^{-1}$ has only one inverse, all we have to do is prove that

    \[{{x}^{-1}}x=e\ \ \ \text{and}\ \ \ x{{x}^{-1}}=e\ \ \ \ (3)\]  

    But (2) and (3) are equivalent! (“And” is commutative.)

    Example ISO

    This sort of double substitution occurs in geometry, too.

    Theorem: If a triangle has two equal angles, then it has two equal sides.

    Proof: In the figure, assume $\angle ABC=\angle ACB$. Then triangle $ABC$ is congruent to triangle $ACB$ since the sides $BC$ and $CB$ are equal (they are the same line segment!) and the adjoining angles are equal by hypothesis.

    The point is that although triangles $ABC$ and $ACB$ are the same triangle, and sides $BC$ and $CB$ are the same line segment, the proof involves recognizing them as geometric figures in two different ways.

    This proof (not Euclid’s origi­nal proof) is hundreds of years old and is called the pons asinorum (bridge of donkeys). It became famous as the first theorem in Euclid’s books that many medi­eval stu­dents could not under­stand. I con­jecture that the name comes from the fact that the triangle as drawn here resembles an ancient arched bridge. These days, isos­ce­les tri­angles are usually drawn taller than they are wide.

    Technical problems in carrying out pattern matching


    In matching a pattern you may have to insert parentheses. For example, if you substitute $x+1$ for $a$, $2y$ for
    $b$ and $4$ for $c$ in the expression \[{{a}^{2}}+{{b}^{2}}={{c}^{2}}\] you get \[{{(x+1)}^{2}}+4{{y}^{2}}=16\]
    If you did the substitution literally without editing the expression so that it had the correct meaning, you would get \[x+{{1}^{2}}+2{{y}^{2}}={{4}^{2}}\] which is not the result of performing the substitution in the expression ${{a}^{2}}+{{b}^{2}}={{c}^{2}}$.   

    Order switching

    You can easily get confused if the patterns involve a switch in the order of the variables.

    Notation for integer division

    • For integers $m$ and $n$, the phrase “$m$ divides $n$” means there is an integer $q$ for which $n=qm$.
    • In number theory (which in spite of its name means the theory of positive integers) the vertical bar is used to denote integer division. So $3|6$ because $6=2\times 3$ ($q$ is $2$ in this case). But “$3|7$” is false because there is no integer $q$ for which $7=q\times 3$.
    • An equivalent definition of division says that $m|n$ if and only if $n/m$ is an integer. Note that $6/3=2$, an integer, but $7/3$ is not an integer.
    • Now look at those expressions:
    • “$m|n$” means that there is an integer $q$ for which $n=qm$.In these two expressions, $m$ and $n$ occur in opposite order.
    • “$m|n$” is true only if $n/m$ is an integer. Again, they are in opposite order. Another way of writing $n/m$ is $\frac{n}{m}$. When math people pronounce “$\frac{n}{m}$” they usually say, “$n$ over $m$” using the same order.
  • I taught these notation in courses for computer engineering and math majors for years. Some of the students stayed hopelessly confused through several lectures and lost points repeatedly on homework and exams by getting these symbols wrong.
  • The problem was not helped by the fact that “$|$” and “$/$” are similar but have very different syntax:

    Math notation gives you no clue which symbols are operators (used to form expressions) and which are verbs (used to form assertions).

  • A majority of the students didn’t have so much trouble with this kind of syntax. I have noticed that many people have no sense of syntax and other people have good intuitive understanding of syntax. I suspect the second type of people find learning foreign languages easy.
  • Many of the articles in the references below concern syntax.
  • References

    Creative Commons License

    This work is licensed under a Creative Commons Attribution-ShareAlike 2.5 License.

    Send to Kindle

    Explaining math

    The interactive examples in this post require installing Wolfram CDF player, which is free and works on most desktop computers using Firefox, Safari and Internet Explorer, but not Chrome. The source code is the Mathematica Notebook SolvEq.nb, which is available for free use under a Creative Commons Attribution-ShareAlike 2.5 License. The notebook can be read by CDF Player if you cannot make the embedded versions in this post work.

    This post explains some basic distinctions that need to be made about the process of writing and explaining math.  Everyone who teaches math knows subconsciously what is happening here; I am trying to raise your consciousness.  For simplicity, I have chosen a technique used in elementary algebra, but much of what I suggest also applies to more abstract college level math.

    An algebra problem

    Solve the equation "$ax=b$" ($a\neq0$).

    Understanding the statement of this problem requires a lot of Secret Knowledge (the language of ninth grade algebra) that most people don't have.

    • The expression "$ax$" means that $a$ and $x$ are numbers and $ax$ is their product. It is not the word "ax". You have to know that writing two symbols next to each other means multiply them, except when it doesn't mean multiply them as in "$\sin\,x$".

    • The whole expression "$ax=b$" ostensibly says that the number $ax$ is the same number as $b$.  In fact, it means more than that. The phrase "solve the equation" tells you that in fact you are supposed to find the value of $x$ that makes $ax$ the same number as $b$.

    • How do you know that "solve the equation" doesn't mean find the value of $a$ that makes $ax$ the same number as $b$? Answer: The word "solve" triggers a convention that $x$, $y$ and $z$ are numbers you are trying to find and $a$, $b$, $c$ stand for numbers that you are allowed to plug in to the equation.

    • The conventions of symbolic math require that you give a solution for any nonzero value of $a$ and any value of $b$.  You specifically are not allowed to pick $a=1$ and $b=33$ and find the value just for those numbers.  (Some college calculus students do this with problems involving literal coefficients.)

    • The little thingy "$(a\neq0)$" must be read as a constraint on $a$.  It does not mean that $a\neq0$ is a fact that you ought to know. ( I've seen college math students make this mistake, admittedly in more complex situations). Nor does it mean that you can't solve the problem if $a=0$ (you can if $b$ is also zero!).

    So understanding what this problem asks, as given, requires (fairly sophisticated in some cases) pattern recognition both to understand the symbolic language it uses, and also to understand the special conventions of the mathematical English that it uses.

    Explicit descriptions

    This problem could be reworded so that it gives an explicit description of the problem, not requiring pattern recognition.  (Warning: "Not requiring pattern recognition" is a fuzzy concept.)  Something like this:  

    You have two numbers $a$ and $b$.  Find a number $c$ for which if you multiply $a$ by $c$ you get $b$.

    This version is not completely explicit.  It still requires understanding the idea of referring to a number by a letter, and it still requires pattern recognition to catch on that the two occurrences of each letter means that their meanings have to match. Also, I know from experience that some American first year college students have trouble with the syntax of the sentence ("for which…", "if…").

    The following version is more explicit, but it cheats by creating an ad hoc way to distinguish the numbers.

    Alice and Bob each give you a number.  How do you find a number with the property that Alice's number times your number is equal to Bob's number? 

    If the problem had a couple more variables it would be so difficult to understand in an explicit form that most people would have to draw a picture of the relationships between them.  That is why algebraic notation was invented.

    Visual descriptions

    Algebra is a difficult foreign language.  Showing the problem visually makes it easier to understand for most people. Our brain's visual processing unit is the most powerful tool the brain has to understand things.  There are various ways to do this.  

    Visualization can help someone understand algebraic notation better.  

    You can state the problem by producing examples such as

    • $\boxed{3}\times\boxed{\text{??}}=\boxed{6}$ 
    • $\boxed{5}\times\boxed{\text{??}}=\boxed{2}$ 
    • $\boxed{42}\times\boxed{\text{??}}=\boxed{24}$

    where the reader has to know the multiplication symbol and, one hopes, will recognize "$\boxed{\text{??}}$" as "What's the value?". But the reader does not have to understand what it means to use letters for numbers, or that "$x$ means you are suppose to discover what it is".  This way of writing an algebra problem is used in some software aimed at K-12 students.  Some of them use a blank box instead of "$\boxed{\text{??}}$".

    Such software often shows the algorithm for solving the problem visually, using algebraic notation like this:

    I have put in some buttons to show numbers as well as $a$ and $b$.  If you have access to Mathematica instead of just to CDF player, you can load SolvEq.nb and put in any numbers you want, but CDF's don't allow input data. 

    You can also illustrate the algorithm using the tree notation for algebra I used in Monads for high school I  (and other posts). The demo below shows how to depict the value-preserving transformation given by the algorithm.  (In this case the value is the truth since the root operation is equals.)

    This demo is not as visually satisfactory as the one illustrating the use of the associative law in Monads for high school I.  For one thing, I had to cheat by reversing the placement of $a$ and $x$.  Note that I put labels for the numerator and denominator legs, a practice I have been using in demos for a while for noncommutative operations.  I await a new inspiration for a better presentation of this and other equation-solving algorithms.

    Another advantage of using pictures is that you can often avoid having to code things as letters which then has to be remembered.  In Monads for high school I, I used drawings of the four functions from a two-element set to itself instead of assigning them letters.  Even mnemonic letters such as $s$ for "switch" and $\text{id}$ for the identity element carry a burden that the picture dispenses with.

    Send to Kindle

    Syntax Trees in Mathematicians’ Brains

    Understanding the quadratic formula

    In my last post I wrote about how a student’s pattern recognition mechanism can go awry in applying the quadratic formula.

    The template for the quadratic formula says that the solution of a quadratic equation of the form ${ax^2+bx+c=0}$ is given by the formula

    $\displaystyle x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$

    When you ask students to solve ${a+bx+cx^2=0}$ some may write

    $\displaystyle x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$

    instead of

    $\displaystyle x=\frac{-b\pm\sqrt{b^2-4ac}}{2c}$

    That’s because they have memorized the template in terms of the letters ${a}$, ${b}$ and ${c}$ instead of in terms of their structural meaning — $ {a}$ is the coefficient of the quadratic term, ${c}$ is the constant term, etc.

    The problem occurs because there is a clash between the occurrences of the letters “a”, “b”, and “c” in the template and in the equation to solve. But maybe the confusion would occur anyway, just because of the ordering of the coefficients. As I asked in the previous post, what happens if students are asked to solve $ {3+5x+2x^2=0}$ after having learned the quadratic formula in terms of ${ax^2+bx+c=0}$? Some may make the same kind of mistake, getting ${x=-1}$ and ${x=-\frac{2}{3}}$ instead of $ {x=-1}$ and $ {x=-\frac{3}{2}}$. Has anyone ever investigated this sort of thing?

    People do pattern recognition remarkably well, but how they do it is mysterious. Just as mistakes in speech may give the linguist a clue as to how the brain processes language, students’ mistakes may tell us something about how pattern recognition works in parsing symbolic statements as well as perhaps suggesting ways to teach them the correct understanding of the quadratic formula.

    Syntactic Structure

    “Structural meaning” refers to the syntactic structure of a mathematical expression such as ${3+5x+2x^2}$. It can be represented as a tree:


    This is more or less the way a program compiler or interpreter for some language would represent the polynomial. I believe it corresponds pretty well to the organization of the quadratic-polynomial parser in a mathematician’s brain. This is not surprising: The compiler writer would have to have in mind the correct understanding of how polynomials are evaluated in order to write a correct compiler.

    Linguists represent English sentences with syntax trees, too. This is a deep and complicated subject, but the kind of tree they would use to represent a sentence such as “My cousin saw a large ship” would look like this:

    Parsing by mathematicians

    Presumably a mathematician has constructed a parser that builds a structure in their brain corresponding to a quadratic polynomial using the same mechanisms that as a child they learned to parse sentences in their native language. The mathematician learned this mostly unconsciously, just as a child learns a language. In any case it shouldn’t be surprising that the mathematicians’s syntax tree for the polynomial is similar to the compiler’s.

    Students who are not yet skilled in algebra have presumably constructed incorrect syntax trees, just as young children do for their native language.

    Lots of theoretical work has been done on human parsing of natural language. Parsing mathematical symbolism to be compiled into a computer program is well understood. You can get a start on both of these by reading the Wikipedia articles on parsing and on syntax trees.

    There are papers on students’ misunderstandings of mathematical notation. Two articles I recently turned up in a Google search are:

    Both of these papers talk specifically about the syntax of mathematical expressions. I know I have read other such papers in the past, as well.

    What I have not found is any study of how the trained mathematician parses mathematical expression.

    For one thing, for my parsing of the expression $ {3+5x+2x^2}$, the branching is wrong in (1). I think of ${3+5x+2x^2}$ as “Take 3 and add $ {5x}$ to it and then add ${2x^2}$ to that”, which would require the shape of the tree to be like this:

    I am saying this from introspection, which is dangerous!

    Of course, a compiler may group it that way, too, although my dim recollection of the little bit I understand about compilers is that they tend to group it as in (1) because they read the expression from left to right.

    This difference in compiling is well-understood.  Another difference is that the expression could be compiled using addition as an operator on a list, in this case a list of length 3.  I don’t visualize quadratics that way but I certainly understand that it is equivalent to the tree in Diagram (1).  Maybe some mathematicians do think that way.

    But these observations indicate what might be learned about mathematicians’ understanding of mathematical expressions if linguists and mathematicians got together to study human parsing of expressions by trained mathematicians.

    Some educational constructivists argue against the idea that there is only one correct way to understand a mathematical expression.  To have many metaphors for thinking about math is great, but I believe we want uniformity of understanding of the symbolism, at least in the narrow sense of parsing, so that we can communicate dependably.  It would be really neat if we discovered deep differences in parsing among mathematicians.  It would also be neat if we discovered that mathematicians parsed in generally the same way!

    Send to Kindle

    Learning by osmosis

    In the Handbook, I said:

    The osmosis theory of teaching is this attitude: We should not have to teach students to understand the way mathematics is written, or the finer points of logic (for example how quantifiers are negated). They should be able to figure these things on their own —“learn it by osmosis”. If they cannot do that they are not qualified to major in mathematics.

    We learned our native language(s) as children by osmosis.  That does not imply that college students can or should learn mathematical reasoning that way. It does not even mean that college students should learn a foreign language that way.

    I have been meaning to write a section of Understanding Mathematics that describes the osmosis theory and gives lots of examples.  There are already three links from other places in abstractmath.org that point to it.  Too bad it doesn’t exist…

    Lately I have been teaching the Gauss-Jordan method using elementary row operations and found a good example.   The textbook uses the notation [m] +a[n] to mean “add a times row n to row m”.  In particular, [m] +[n] means “add row n to row m”, not “add row m to row n”. So in this notation ” [m] +[n] ” is not an expression, but a command, and in that command the plus sign is not commutative.   Similarly, “3[2]” (for example) does not mean “3 times row 2”, it means “change row 2 to 3 times row 2”.

    The explanation is given in parentheses in the middle of an example:

    …we add three times the first equation to the second equation.  (Abbreviation: [2] + 3[1].  The [2] means we are changing equation [2].  The expression [2] + 3[1] means that we are replacing equation 2 by the original equation plus three times equation 1.)

    This explanation, in my opinion, would be incomprehensible to many students, who would understand the meaning only once it was demonstrated at the board using a couple of examples.  The phrase “The [2] means we are changing equation [2]” should have said something like “the left number, [2] in this case, denotes the equation we are changing.”  The last sentence refers to “the original equation”, meaning equation [2].  How many readers would guess that is what they mean?

    In any case, better notation would be something like “[2]  3[1]”. I have found several websites that use this notation, sometimes written in the opposite direction. It is familiar to computer science students, which most of the students in my classes are.

    Putting the definition of the notation in a parenthetical remark is also undesirable.  It should be in a separate paragraph marked “Notation”.

    There is another point here:  No verbal definition of this notation, however well written, can be understood as well as seeing it carried out in an example.  This is also true of matrix multiplication, whose definition in terms of symbols such as a_ib_j is difficult to understand (if a student can figure out how you do it from this definition they should be encouraged to be a math major), whereas the process becomes immediately clear when you see someone pointing with one hand at successive entries in a row of one matrix while pointing with the other hand at successive entries in the other matrix’s columns.  This is an example of the superiority (in many cases) of pattern recognition over definitions in terms of strings of symbols to be interpreted.  I did write about pattern recognition, here.

    Send to Kindle

    Constraints on the Philosophy of Mathematics

    In a recent blog post I described a specific way in which neuroscience should constrain the philosophy of math. For example, many mathematicians who produce a new kind of mathematical object feel they have discovered something new, so they may believe that mathematical objects are created rather than eternally existing. But identifying something as newly created is presumably the result of a physical process in the brain. So the feeling that an object is new is only indirectly evidence that the object is new.  (Our pattern recognition devices work pretty well with respect to physical objects so that feeling is indeed indirect evidence.)

    This constraint on philosophy is not based on any discovery that there really is a process in the brain devoted to recognizing new things. (Déjà vu is probably the result of the opposite process.) It’s just that neuroscience has uncovered very strong evidence that mental events like that are based on physical processes in the brain. Because of that work on other processes, if someone claims that recognizing newness is not based on a physical process in the brain, the burden of proof is on them.  In particular, they have to provide evidence that recognizing that a mathematical object is newly discovered says something about math other than what happened in your brain.

    Of course, it will be worthwhile to investigate how the feeling of finding something new arises in the brain in connection with mathematical objects. Understanding the physical basis for how the brain does math has the potential of improving math education, although that may be years down the road.

    Send to Kindle