Tag Archives: meme

The great math mystery

The great math mystery

Last night Nova aired The great math mystery, a documentary that describes mathematicians’ ideas about whether math is discovered or invented, whether it is “out there” or “in our head”. It was well-done. Things were explained clearly using images and metaphors, although they did show Maxwell’s equations as algebra (without explaining it). The visual illustrations of connections between Maxwell’s equations and music and electromagnetic waves was one of the best parts of the documentary.

In my opinion they made good choices of mathematical ideas to cover, but I imagine a lot of research mathematicians will have a hissy that they didn’t cover XXX (their subject).

The applications to physics dominated the show (that is not a complaint), but someone did mention the remarkable depth of number theory. Number theory is deep pure math that has indeed had some applications, but that’s not why some of the greatest mathematicians in the world have spent their lives on the subject. I believe logic and proof was never mentioned, and that is completely appropriate for a video made for the general public. Some mathematicians will disagree with that last sentence.

Where does math live?

The question,

Does math live

  • In an ideal world separate from the physical world,
  • in the physical world, or
  • in our brains?

has a perfectly clear answer: It exists in our brains.

Ideal world

The notion that math lives in an ideal world, as Plato supposedly believed, has no evidence for it at all.

I suppose you could say that Plato’s ideal world does exist — in our brains. But that wouldn’t be quite correct: We have a mental image of Plato’s ideal world in our brains, but that image is not the whole ideal world: If we know about triangles, we can imagine the Ideal Triangle to be in his world, but we have to know about the zeta function or the monster group to visualize them to be in his world. Even then, the monster group in our brain is just a collection of neurons connected to concepts such as “largest sporadic simple group” or “contains\[2^{46} \cdot 3^{20} \cdot 5^9 \cdot 7^6 \cdot 11^2 \cdot 13^3 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71\]elements” — but there is not a neuron for each element! We don’t have that many neurons.

The size of the monster group does not live in my brain. I copied it from Wikipedia.

Real world

Our collective experience is that math is extraordinarily useful for modeling many aspects of the real world. But in what sense does that mean it exists in the real world?

There is a sense in which a model of the real world exists in our brains. If we know some of the math that explains certain aspects of the real world, our brains have neuron connections that make that math live in our brain and in some sense in the model of the real world that is in our brain. But does that mean the math is “out there”? I don’t see why.

Math is a social endeavor

One point that usually gets left out of discussions of Platonism is this: Some math exists in any individual person’s brain. But math also exists in society. The math floating around in the individual brains of people is subject to frequent amendments to those people’s understanding because they interact with the real world and in particular with other people.

In particular, theoretical math exists in the society of mathematicians. It is constantly fluctuating because mathematicians talk to each other. They also explain it to non-mathematicians, which as everyone know can bring new insights into the brain of the person doing the explaining.

So I think that the best answer to the question, where does math live? is that math is a bunch of memes that live in our social brain.

References

I have written about these issues before:

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 2.5 License.

Send to Kindle

Thinking about thought

Modules of the brain

Cognitive neuroscientists have taken the point of view that concepts, memories, words, and so on are represented in the brain by physical systems: perhaps they are individual neurons, or systems of structures, or even waves of discharges. In my previous writing I have referred to these as modules, and I will do that here. Each module is connected to many other modules that encode various properties of the concept, thoughts and memories that occur when you think of that concept (in other words stimulate the module), and so on.

How these modules implement the way we think and perceive the world is not well understood and forms a major research task of cognitive neuroscience. The fact that they are implemented in physical systems in the brain gives us a new way of thinking about thought and perception.

Examples

The grandmother module

There is a module in your brain representing the concept of grandmother. It is likely to be connected to other modules representing your actual grandmothers if you have any memory of them. These modules are connected to many others — memories (if you knew them), other relatives related to them, incidents in their lives that you were told about, and so on. Even if you don’t have any memory of them, you have a module representing the fact that you don’t have any memory of them, and maybe modules explaining why you don’t.

Each different aspect related to “grandmother” belongs to a separate module somehow connected to the grandmother module. That may be hard to believe, but the human brain has over eighty billion neurons.

A particular module connected with math

There is a module in your brain connected with the number $42$. That module has many connections to things you know about it, such as its factorization, the fact that it is an integer, and so on. The module may also have connections to a module concerning the attitude that $42$ is the Answer. If it does, that module may have a connection with the module representing Douglas Adams. He was physically outside your body, but is the number $42$ outside your body?

That has a decidedly complicated answer. The number $42$ exists in a network of brains which communicate with each other and share some ideas about properties of $42$. So it exists socially. This social existence occasionally changes your knowledge of the properties of $42$ and in particular may make you realize that you were wrong about some of its aspects. (Perhaps you once thought it was $7\times 8$.)

This example suggests how I have been using the module idea to explain how we think about math.

A new metaphor for understanding thinking

I am proposing to use the idea of module as a metaphor for thinking about thinking. I believe that it clarifies a lot of the confusion people have about the relation between thinking and the real world. In particular it clarifies why we think of mathematical objects as if they were real-world objects (see Modules and math below.)

I am explicitly proposing this metaphor as a successor to previous metaphors drawn from science to explain things. For example when machines became useful in the 18th century many naturalists used metaphors such as the Universe is a Machine or the Body is a Machine as a way of understanding the world. In the 20th century we fell heavily for the metaphor that the Mind Is A Computer (or Program). Both the 18th century and the 20th century metaphors (in my opinion) improved our understanding of things, even though they both fell short in many ways.

In no way am I claiming that the ways of thinking I am pushing have anything but a rough resemblance to current neuroscientists’ thinking. Even so, further discoveries in neuroscience may give us even more insight into thinking that they do now. Unless at some point something goes awry and we have to, ahem, think differently again.

For thousands of years, new scientific theories have been giving us new metaphors for thinking about life, the universe and everything. I am saying here is a new apple on the tree of knowledge; let’s eat it.

The rest of this post elaborates my proposed metaphor. Like any metaphor, it gets some things right and some wrong, and my explanations of how it works are no doubt full of errors and dubious ideas. Nevertheless, I think it is worth thinking about thought using these ideas with the usual correction process that happens in society with new metaphors.

Our theory of the world

We don’t have any direct perception of the “real world”; we have only the sensations we get from those parts of our body which sense things in the world. These sensations are organized by our brain into a theory of the world.

  • The theory of the world says that the world is “out there” and that our sensory units give us information about it. We are directly aware of our experiences because they are a function of our brain. That the experiences (many of them) originate from outside our body is a very plausible theory generated by our brain on the bases of these experience.
  • The theory is generated by our brain in a way that we cannot observe and is out of our control (mostly). We see a table and we know we can see in in daytime but not when it is dark and we can bump into it, which causes experiences to occur via our touch and sound facilities. But the concept of “table” and the fact that we decide something is or is not a table takes place in our brain, not “out there”.
  • We do make some conscious amendments to the theory. For example, we “know” the sky is not a blue shell around our world, although it looks like it. That we think of the apparent blue surface as an artifact of our vision processing comes about through conscious reasoning. But most of how we understand the world comes about subconsciously.
  • Our brain (and the rest of our body) does an enormous amount of processing to create the view of the world that we have. Visual perception requires a huge amount of processing in our brain and the other sensory methods we use also undergo a lot of processing, but not as much as vision.
  • The theory of the world organizes a lot of what we experience as interaction with physical objects. We perceive physical objects as having properties such as persistence, changing with time, and so on. Our brains create the concept of physical object and the properties of persistence, changing, and particular properties an individual object might have.
  • We think of the Mississippi River as an object that is many years old even though none of its current molecules are the same as were in the river a decade ago. How is it one thing when its substance is constantly changing? This is a famous and ancient conundrum which becomes a non-problem if you realize that the “object” is created inside your brain and imposed by your thinking on your understanding of the world.
  • The notion that semantics is a connection between our brain and the outside world has also become a philosophical conundrum that vanishes if we understand that the connection with the outside world exists entirely inside our theory, which is entirely within our brain.

Society

Our brain also has a theory of society We are immersed in a world of people, that we have close connections with some of them and more distant connections with many other via speech, stories, reading and various kinds of long-distance communications.

  • We associate with individual people, in our family and with our friend. The communication is not just through speech: it involves vision heavily (seeing what The Other is thinking) and probably through pheromones, among other channels. For one perspective on vision, see The vision revolution, by Mark Changizi. (Review)
  • We consciously and unconsciously absorb ideas and attitudes (cultural and otherwise) from the people around us, especially including the adults and children we grow up with. In this way we are heavily embedded in the social world, which creates our point of view and attitudes by our observation and experience and presumably via memes. An example is the widespread recent changes in attitudes in the USA concerning gay marriage.
  • The theory of society seems to me to be a mechanism in our brain that is separate from our theory of the physical world, but which interacts with it. But it may be that it is better to regard the two theories as modules in one big theory.

Modules and math

The module associated with a math object is connected to many other modules, some of which have nothing to do with math.

  • For example, they may have have connections to our sensory organs. We may get a physical feeling that the parabola $y=x^2$ is going “up” as $x$ “moves to the right”. The mirror neurons in our brain that “feel” this are connected to our “parabola $y=x^2$” module. (See Constructivism and Platonism and the posts it links to.)
  • I tend to think of math objects as “things”. Every time I investigate the number $111$, it turns out to be $3\times37$. Every time I investigate the alternating group on $6$ letters it is simple. If I prove a new theorem it feels as if I have discovered the theorem. So math objects are out there and persistent.
  • If some math calculation does not give the same answer the second time I frequently find that I made a mistake. So math facts are consistent.
  • There is presumably a module that recognizes that something is “out there” when I have repeatable and consistent experiences with it. The feeling originates in a brain arranged to detect consistent behavior. The feeling is not evidence that math objects exist in some ideal space. In this way, my proposed new way of thinking about thought abolishes all the problems with Platonism.
  • If I think of two groups that are isomorphic (for example the cyclic group of order $3$ and the alternating group of rank $3$), I picture them as in two different places with a connection between the two isomorphic ones. This phenomenon is presumably connected with modules that respond to seeing physical objects and carrying with them a sense of where they are (two different places). This is a strategy my brain uses to think about objects without having to name them, using the mechanism already built in to think about two things in different places.

Acknowledgments

Many of the ideas in this post come from my previous writing, listed in the references. This post was also inspired by ideas from Chomsky, Jackendoff (particularly Chapter 9), the Scientific American article Brain cells for Grandmother by Quian Quiroga, Fried and Koch, and the papers by Ernest and Hersh.


References

Previous posts

In reverse chronological order

Abstractmath articles

Other sources

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 2.5 License.


Send to Kindle

Abstract objects

Some thoughts toward revising my article on mathematical objects.  

Mathematical objects are a kind of abstract object.  There are lots of abstract objects that are not mathematical objects,  For example, if you keep a calendar or schedule for appointments, that calendar is an abstract object.  (This example comes from [2]). 

It may be represented as a physical object or you may keep it entirely in your head.  I am not going to talk about the latter possibility, because I don't know what to say.

  1. If it is a paper calendar, that physical object represents the information that is contained in your calendar.  
  2. Same for a calendar on a computer, but that is stored as magnetic bits on a disk or in flash memory. A computer program (part of the operating system) is required to present it on the screen in such a way that you can read it.  Each time you open it, you get a new physical representation of the calendar.

Your brain contains a module (see [5], [7]) that interprets the representation in (1) or (2) and which has connections with other modules in your brain for dates, times, locations and whether the appointment is for a committee, a medical exam, or whatever.  

The calendar-interpreter module in your brain is necessary for the physical object to be a calendar.  The physical object is not in itself your calendar.  The calendar in this sense does not exist in the physical world.  It is abstract.  Since we think of it as a thing, it is an abstract object.

The abstract object "my calendar" affects the physical world (it causes you to go to the dentist next Tuesday).  The relation of the abstract object to the physical world is mediated by whatever physical object you call your calendar along with the modules in the brain that relate to it.  The modules in the brain are actions by physical objects, so this point of view does not involve Cartesian style dualism.

Note:  A module is a meme.  Are all memes modules?  This needs to be investigated.  Whatever they are, they exist as physical objects in people's brains.

Mathematical objects

A rigorous proof of a theorem about a mathematical object tends to refer to the object as if it were absolutely static and did not affect anything in the physical world.  I talked about this in [10], where I called it the dry bones representation of a mathematical object.  Mathematical objects don't have to be thought of this way, but (I suggest) what makes them mathematical objects is that they can be thought of in dry bones mode.  

If you use calculus to figure out how much fuel to use in a rocket to make it go a mile high, then actually use that amount in the rocket and send it off, your calculations have affected your physical actions, so you were thinking of the calculations as an abstract object.  But if you sit down to check your calculations, you concentrate on the steps one by one with the rules of algebra and calculus in mind.  You are looking at them as inert objects, like you would look at a bone of a dinosaur to see what species it belongs to. From that point of view your calculations form a mathematical object, because you are using the dry-bones approach.

Caveat

All this blather is about how you should think about mathematical objects.  It can be read as philosophy, but I have no intention of defending it as philosophy.  People learning abstract math at college level have a lot of trouble thinking about mathematical objects as objects, and my intention is to start clarifying some aspects of how you think about them in different circumstances.  (The operative word is "start" — there is a lot more to be said.)

About the exposition of this post (a commercial)

You will notice that I gave examples of abstract objects but did not define the word "abstract object".  I did the same with mathematical objects.  In both cases, I put the word "abstract object" or "mathematical object" in boldface at a suitable place in the exposition.

That is not the way it is done in math, where you usually make the definition of a word in a formal way, marking it as Definition, putting the word in bold or italics, and listing the attributes it must have.  I want to point out two things:

  • For the most part, that behavior is peculiar to mathematics.
  • This post is not a presentation of mathematical ideas.  

This gives me an opportunity for a commercial:  Read what we have written about definitions in References [1], [3] and [4].

References

  1. Atish Bagchi and Charles Wells, Varieties of Mathematical Prose, 1998.
  2. Reuben Hersh, What is mathematics, really? Oxford University Press, 1997
  3. Charles Wells, Handbook of Mathematical Discourse.
  4. Charles Wells, Mathematical objects in abstractmath.org
  5. Math and modules of the mind (previous post)
  6. Mathematical Concepts (previous post)
  7. Thinking about abstract math (previous post)
  8. Terrence W. Deacon, Incomplete Nature.  W. W. Norton, 2012. [I have read only a little of this book so far, but I think he is talking about abstract objects in the sense I have described above.]
  9. Gideon Rosen, Abstract Objects.  Stanford Encyclopedia of Philosophy.
  10. Representations II: Dry Bones (previous post)

 

http://plato.stanford.edu/entries/abstract-objects/

Send to Kindle

Thinking about abstract math

 

The abstraction cliff

In universities in the USA, a math major typically starts with calculus, followed by courses such as linear algebra, discrete math, or a special intro course for math majors (which may be taken simultaneously with calculus), then go on to abstract algebra, analysis, and other courses involving abstraction and proofs.

At this point, too many of them hit a wall; their grades drop and they change majors.  They had been getting good grades in high school and in calculus because they were strong in algebra and geometry, but the sudden increase in abstraction in the newer courses completely baffles them. I believe that one big difficulty is that they can't grasp how to think about abstract mathematical objects.  (See Reference [9] and note [a].)   They have fallen off the abstraction cliff.  We lose too many math majors this way. (Abstractmath.org is my major effort to address the problems math majors have during or after calculus.)

This post is a summary of the way I see how mathematicians and students think about math.  I will use it as a reference in later posts where I will write about how we can communicate these ways of thinking.

Concept Image

In 1981, Tall and Vinner  [5] introduced the notion of the concept image that a person has about a mathematical concept or object.   Their paper's abstract says

The concept image consists of all the cognitive structure in the individual's mind that is associated with a given concept. This may not be globally coherent and may have aspects which are quite different from the formal concept definition.

The concept image you may have of an abstract object generally contains many kinds of constituents:

  • visual images of the object
  • metaphors connecting the object to other concepts
  • descriptions of the object in mathematical English
  • descriptions and symbols of the object in the symbolic language of math
  • kinetic feelings concerning certain aspects of the object
  • how you calculate parameters of the object
  • how you prove particular statements about the object

This list is incomplete and the items overlap.  I will write in detail about these ideas later.

The name "concept image" is misleading [b]), so when I have written about them, I have called them metaphors or mental representations as well as concept images, for example in [3] and [4].

Abstract mathematical concepts

This is my take on the notion of concept image, which may be different from that of most researchers in math ed. It owes a lot to the ideas of Reuben Hersh [7], [8].

  • An abstract mathematical concept is represented physically in your brain by what I have called "modules" [1] (physical constituents or activities of the brain [c]).
  • The representation generally consists of many modules.  They correspond to the list of constituents of a concept image given above.  There is no assumption that all the modules are "correct".
  • This representation exists in a semi-public network of mathematicians' and students' brains. This network exercises (incomplete) control over your personal representation of the abstract structure by means of conversation with other mathematicians and reading books and papers.  In this sense, an abstract concept is a social object.  (This is the only point of view in the philosophy of math that I know of that contains any scientific content.)

Notes

[a]  Before you object that abstraction isn't the only thing they have trouble with, note that a proof is an abstract mathematical object. The written proof is a representation of the abstract structure of the proof.  Of course, proofs are a special kind of abstract structure that causes special problems for students.

[b] Cognitive science people use "image" to include nonvisual representations, but not everyone does.  Indeed, cognitive scientists use "metaphor" as well with a broader meaning than your high school English teacher.  A metaphor involves the cognitive merging of parts of two concepts (specifically with other parts not merged). See [6].

[c] Note that I am carefully not saying what the modules actually are — neurons, networks of neurons, events in the brain, etc.   From the point of view of teaching and understanding math, it doesn't matter what they are, only that they exist and live in a society where they get modified by memes  (ideas, attitudes, styles physically transmitted from brain to brain by speech, writing, nonverbal communication, appearance, and in other ways).

References

  1. Math and modules of the mind (previous post)
  2. Mathematical Concepts (previous post)
  3. Mental, physical and mathematical representations (previous post)
  4. Images and Metaphors (abstractmath.org)
  5. David Tall and Schlomo Vinner, Concept Image and Concept Definition in Mathematics with particular reference to limits and continuity, Journal Educational Studies in Mathematics, 12 (May, 1981), no. 2, 151–169.
  6. Conceptual metaphor (Wikipedia article).
  7. What is mathematics, really? by Reuben Hersh, Oxford University Press, 1999.  Read online at Questia.
  8. 18 Unconventional Essays on the Nature of Mathematics, by Reuben Hersh. Springer, 2005.
  9. Mathematical objects (abstractmath.org).

 

 

Send to Kindle