Tag Archives: mathematical discourse

The intent of mathematical assertions

An assertion in mathematical writing can be a claim, a definition or a constraint.  It may be difficult to determine the intent of the author.  That is discussed briefly here.

Assertions in math texts can play many different roles.

English sentences can state facts, ask question, give commands, and other things.  The intent of an English sentence is often obvious, but sometimes it can be unexpectedly different from what is apparent in the sentence.  For example, the statement “Could you turn the TV down?” is apparently a question expecting a yes or no answer, but in fact it may be a request. (See the Wikipedia article on speech acts.) Such things are normally understood by people who know each other, but people for whom English is a foreign language or who have a different culture have difficulties with them.

There are some problems of this sort in math English and the symbolic language, too.  An assertion can have the intent of being a claim, a definition, or a constraint.

Most of the time the intent of an assertion in math is obvious. But there are conventions and special formats that newcomers to abstract math may not recognize, so they misunderstand the point of the assertion. This section takes a brief look at some of the problems.


The way I am using the words “assertion”, “claim”, and “constraint” is not standard usage in math, logic or linguistics.


In most circumstances, you would expect that if a lecturer or author makes a math assertion, they are claiming that it is a true statement, and you would be right.

  1. “The $240$th digit of $\pi$ after the decimal point is $4$.”
  2. “If a function is differentiable, it must be continuous.”
  3. “$7\gt3$”


  • You don’t have to know whether these statements are true or not to recognize them as claims. An incorrect claim is still a claim.
  • The assertion in (a) is a statement, in this case a false one.  If it claimed the googolth digit was $4$ you would never be able to tell whether it is true or not, but it
    still would be an assertion intended as a claim.
  • The assertion in (b) uses the standard math convention that an indefinite noun phrase (such as “a widget”) in the subject of a sentence is universally quantified (see also the article about “a” in the Glossary.) In other words, “An integer divisible by $4$ must be even” claims that any integer divisible by $4$ is even. This statement is claim, and it is true.
  • (c) is a (true) claim in the symbolic language. (Note that “$3 + 4$” is not an assertion at all, much less a claim.)


Definitions are discussed primarily in the chapter on definitionsA definition is not the same thing as a claim. 


The definition

“An integer is even if it is divisible by $2$”

makes the claim

integer is even if and only if it is
divisible by $2$”


(If you are surprised that the definition uses “if” but the claim uses “if and only if”, see the Glossary article on “if”.)

Unmarked definitions

Math texts sometimes define something without saying that it is a definition. Because of that, students may sometimes think a claim is a definition.


Suppose that the concept of “even integer” was new to you and the book said, “A number is even if it is divisible by $4$.” Perhaps you thought that this was a definition. Later the book refers to $6$ as even and you pull your hair out wondering why. The statement is a correct claim but an incorrect definition. A good writer would write something like “Recall that a number is even if it is divisible by $2$, so that in particular it is even if it is divisible by $4$.”

On the other hand, you may think a definition is only a claim.


A lecturer may say “By definition, an integer is even if it is divisible by $2$”, and you write down: “An integer is even if it is divisible by $2$”. Later, you get all panicky wondering How did she know that?? (This has happened to me.)

The confusion in the preceding example can also occur if a books says, “An integer is even if it is divisible by $2$” and you don’t know about the convention that when an author puts a word or phrase in boldface or italics it may mean that they are defining it.

A good writer always labels definitions


Here are two assertions that contain variables.

  • “$n$ is even.”
  • “$x\gt1$”.

Such an assertion is a constraint (or a condition) if the intent is
that the assertion will hold in that part of the text (the scope of the constraint). The part of the text in which it holds is usually the immediate vicinity unless the authors explicitly says it will hold in a larger part of the text such as “this chapter” or “in the rest of the book”.

  • Sometimes the wording makes it clear that the phrase is a constraint. So a statement such as “Suppose $3x^2-2x-5\geq0$” is a constraint on the possible values of $x$.
  • The statement “Suppose $n$ is even” is an explicit requirement that $n$ be even and an implicit requirement that $n$ be an integer.
  • A condition for which you are told to find the solution(s) is a constraint. For example: “Solve the equation $3x^2-2x-5=0$”. This equation is a constraint on the variable $x$. “Solving” the equation means saying explicitly which numbers make the equation true.


The constraint may appear in parentheses after the assertion as a postcondition on an assertion.


“$x^2\gt x\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(\text{all }x\gt1)$”

which means that if the constraint “$x\gt1$” holds, then “$x^2\gt x$” is true. In other words, for all $x\gt1$, the statement $x^2\gt x$ is true. In this statement, “$x^2\gt x$” is not a constraint, but a claim which is true when the constraint is true.

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 2.5 License.

Send to Kindle


This is a revised draft of the abstractmath.org article on context in math texts. Note: WordPress changed double primes into quotes. Tsk.


Written and especially spoken language depends heavily on the context – the physical surroundings, the preceding conversation, and social and cultural assumptions.  Mathematical statements are produced in such contexts, too, but here I will discuss a special thing that happens in math conversation and writing that does not seem to happen much in other sorts of discourse:

The meanings of expressions
in both the symbolic language and math English
change from phrase to phrase
as the speaker or writer changes the constraints on them.


In a math text, before the occurrence of a phrase such as “Let $n=3$”, $n$ may be known only as an integer variable.  After the phrase, it means specifically $3$.  So this phrase changes the meaning of $n$ by constraining $n$
to be $3$.  We say the context of occurrences of “$n$” before the phrase requires only that $n$ be an integer, but after the occurrence the context requires $n=3$.


In this article, the context at a particular location in mathematical discourse is the sum total of what the reader or listener can know about the symbols and names used in the discourse when they have read everything up to that location.


  • Each clause can change the meaning of or constraints on one or more symbols or names. The conventions in effect during the discourse can also put constraints on the symbols and names.
  • Chierchia and McConnell-Ginet give a mathematical definition of context in the sense described here.
  • The references to “before” and “after” the phrase “Let $3$” refer to the physical location in text and to actual time in spoken math. There is more about this phenomenon in the Handbook of Mathematical Discourse, page 252, items (f) and (g).
  • Contextual changes of this sort take place using the pretense that you are reading the text in order, which many students and professionals do not do (they are “grasshoppers”).
  • I am not aware of much context-changing in everyday speech. One place it does occur is in playing games. For example, during some card games the word “trumps” changes meaning from time to time.
  • In symbolic logic, the context at a given place may be denoted by “$\Gamma$”.

Detailed example of a math text

Here is a typical example of a theorem and its proof.  It is printed twice, the second time with comments about the changes of context.  This is the same proof that is already analyzed practically to death in the chapter on presentation of proofs.

First time through

Definition: Divides

Let $m$ and $n$ be integers with $m\ne 0$. The statement “$m$ divides $n$” means that there is an integer $q$ for which $n=qm$


Let $m$, $n$ and $p$ be integers, with $m$ and $n$ nonzero, and suppose $m$ divides $n$ and $n$ divides $p$.  Then $m$ divides $p$.


By definition of divides, there are integers $q$ and $q’$ for which $n=qm$ and $p=q’n$. We must prove that there is an integer $q”$ for which $p=q”m$. But $p=q’n=q’qm$, so let $q”=q’q$.  Then $p=q”m$.

Second time, with analysis

Definition: Divides

Begins a definition. The word “divides” is the word being defined. The scope of the definition is the following paragraph.

Let $m$ and $n$ be integers

$m$ and $n$ are new symbols in this discourse, constrained to be integers.

with $m\ne 0$

Another constraint on $m$.

The statement “$m$ divides $n$ means that”

This phrase means that what follows is the definition of “$m$ divides $n$”

there is an integer $q$

“There is” signals that we are beginning an existence statement and that $q$ is the bound variable within the existence statement.

for which $n=qm$

Now we know that “$m$ divides $n$” and “there is an integer $q$ for which $m=qn$” are equivalent statements.  Notes: (1) The first statement would only have implied the second statement if this had not been in the context of a definition. (2) After the conclusion of the definition, $m$, $n$ and $q$ are undefined variables.


This announces that the next paragraph is a statement has been proved. In fact, in real time the statement was proved long before this discourse was written, but in terms of reading the text in order, it has not yet been proved.

Let $m$, $n$ and
$p$ be integers,

“Let” tells us that the following statement is the hypothesis of an implication, so we can assume that $m$, $n$ and $p$ are all integers.  This changes the status of $m$ and $n$, which were variables used in the preceding paragraph, but whose constraints disappeared at the end of the paragraph.  We are starting over with $m$ and $n$.

with $m$
and $n$ nonzero.

This clause is also part of the hypothesis. We can assume $m$ and $n$ are constrained to be nonzero.

and suppose $m$ divides $n$ and $n$ divides $p$.

This is the last clause in the hypothesis. We can assume that $m$ divides $n$ and $n$ divides $p$.

Then $m$
divides $p$.

This is a claim that $m$ divides $p$. It has a different status from the assumptions that $m$ divides $n$ and $n$ divides $p$. If we are going to follow the proof we have to treat $m$ and $n$ as if they divide $n$ and $p$ respectively. However, we can’t treat $m$ as if it divides $p$. All we know is that the author is claiming that $m$ divides $p$, given the facts in the hypothesis.


An announcement that a proof is about to begin, meaning a chain of math reasoning. The fact that it is a proof of the Theorem just stated is not explicitly stated.

By definition of divides, there are integers $q$ and $q’$ for which $n=qm$ and $p=q’n$.

The proof uses the direct method (rather than contradiction or induction or some other method) and begins by rewriting the hypothesis using the definition of “divides”. The proof does not announce the use of these techniques, it just starts in doing it. So $q$ and $q$’ are new symbols that satisfy the equations $n=qm$ and $p=q’n$. The phrase “by definition of divides” justifies the introduction of $q$ and $q’$. $m$, $n$ and $p$ have already been introduced in the statement of the Theorem.

We must prove that there is an integer $q”$ for which $p=q”m$.

Introduces a new variable $q”$ which has not been given a value. We must define it so that $p=q”m$; this requirement is justified (without saying so) by the definition of “divides”.

But $p=q’n=q’qm$,

This is a claim about $p$, $q$, $q’$, $m$ and $n$.  It is justified by certain preceding sentences but this justification is not made explicit. Note that “$p=q’n=q’qm$” pivots on $q’n$, in other words makes two claims about it.

so let $q”=q’q$.

We have already introduced $q”$; now we give it the value $q”=q’q$.

Then $p=q”m$

This is an assertion about $p$, $q”$ and $n$, justified (but not explicitly — note the hidden use of associativity) by the previous claim that $p=q’n=q’qm$.


The proof is now complete, although no
statement asserts that it is.


If you have some skill in reading proofs, all the stuff in the right hand column happens in your brain without, for the most part, your being conscious of it.


Thanks to Chris Smith for correcting errors.

References for “context”

Chierchia, G. and S. McConnell-Ginet
(1990), Meaning and Grammar. The MIT Press.

de Bruijn, N. G. (1994), “The mathematical vernacular, a
language for mathematics with typed sets”. In Selected Papers on Automath,
Nederpelt, R. P., J. H. Geuvers, and R. C. de Vrijer, editors, volume 133 of
Studies in Logic and the Foundations of Mathematics, pages 865 – 935. Elsevier

Steenrod, N. E., P. R. Halmos, M. M. Schif­fer,
and J. A. Dieudonné (1975), How to Write Mathematics.
American Mathematical Society.

Send to Kindle

Improving abstractmath.org

This post discusses some ideas I have for improving abstractmath.org.

Handbook of mathematical discourse

The Handbook was kind of a false start on abmath, and is the source of much of the material in abmath. It still contains some material not in abmath, parti­cularly the citations.

By citations I mean lexicographical citations: examples of the usage from texts and scholarly articles.

I published the Handbook of mathe­ma­tical discourse in 2003. The first link below takes you to an article that describes what the Handbook does in some detail. Briefly, the Handbook surveys the use of language in math (and some other things) with an emphasis on the problems it causes students. Its collection of citations of usage could some day could be the start of an academic survey of mathematical language. But don’t expect me to do it.


The Handbook exists as a book and as two different web versions. I lost the TeX source of the Handbook a few years after I published the book, so none of the different web versions are perfect. Version 2 below is probably the most useful.

  1. Handbook of mathe­ma­tical discourse. Description.
  2. Handbook of mathe­ma­tical discourse. Hypertext version without pictures but with active internal links. Some links don’t work, but they won’t be repaired because I have lost the TeX input files.
  3. Handbook of mathe­ma­tical discourse. Paperback.
  4. Handbook of mathematical discourse. PDF version of the printed book, including illustrations and citations but without hyperlinks.
  5. Citations for the paperback version of the Handbook. (The hypertext version and the PDF version include the citations.)


Soon after the Handbook was published, I started work on abstractmath.org, which I abbreviate as abmath. It is intended specifically for people beginning to study abstract math, which means roughly post-calculus. I hope their teachers will read it, too. I had noticed when I was teaching that many students hit a big bump when faced with abstraction, and many of them never recovered. They would typically move into another field, often far away from STEM stuff.


These abmath articles give more detail about the purpose of this website and the thinking behind the way it is presented:

Presentation of abmath


Abmath is written for students of abstract math and other beginners to tell them about the obstacles they may meet up with in learning abstract math. It is not a scholarly work and is not written in the style of a scholarly work. There is more detail about its style in my rant in Attitude.

Scholarly works should not be written in the style of a scholarly work, either.


To do:

Every time I revise an article I find myself rewriting overly formal parts. Fifty years of writing research papers has taken its toll. I must say that I am not giving this informalization stuff very high priority, but I will continue doing it.

No citations

One major difference concerns the citations in the Handbook. I collected these in the late nineties by spending many hours at Jstor and looking through physical books. When I started abmath I decided that the website would be informal and aimed at students, and would contain few or no citations, simply because of the time it took to find them.

Boxouts and small screens

The Handbook had both sidebars on every page of the paper version containing a reference index to words on that page, and also on many pages boxouts with comments. It was written in TeX. I had great difficulty using TeX to control the placement of both the sidebars and especially the boxouts. Also, you couldn’t use TeX to let the text expand or contract as needed by the width of the user’s screen.

Abmath uses boxouts but not sidebars. I wrote Abmath using HTML, which allows it to be presented on large or small screens and to have extensive hyperlinks.
HTML also makes boxouts easy.

The arrival of tablets and i-pods has made it desirable to allow an abmath page to be made quite narrow while still readable. This makes boxouts hard to deal with. Also I have gotten into the habit of posting revisions to articles on Gyre&Gimble, whose editor converts boxouts into inline boxes. That can probably be avoided.

To do:

I have to decide whether to turn all boxouts into inline small-print paragraphs the was you see them in this article. That would make the situation easier for people reading small screens. But in-line small-print paragraphs are harder to associate to the location you want them to refer, in contrast to boxouts.

Abmath 2.0

For the first few years, I used Microsoft Word with MathType, but was plagued with problems described in the link below. Then I switched to writing directly in HTML. The articles of abmath labeled “abstractmath.org 2.0” are written in this new way. This makes the articles much, much easier to update. Unfortunately, Word produces HTML that is extraordinarily complicated, so transforming them into abmath 2.0 form takes a lot of effort.



Abmath does not have enough illustrations and diagrams. Gyre&Gimble has many posts with static illustrations, some of them innovative. It also has some posts with interactive demos created with Mathematica. These demos require the reader to download the CDF Player, which is free. Unfortunately, it is available only for Windows, Mac and Linux, which precludes using them on many small devices.


To do:

  • Create new illustrations where they might be useful, and mine Gyre&Gimble and other sources.
  • There are many animated GIFs out there in the math cloud. I expect many of them are licensed under Creative Commons so that I can use them.
  • I expect to experiment with converting some of the interactive CFD diagrams that are in Gyre&Gimble into animated GIFs or AVIs, which as far as I know will run on most machines. This will be a considerable improvement over static diagrams, but it is not as good as interactive diagrams, where you can have several sliders controlling different variables, move them back and forth, and so on. Look at Inverse image revisited. and “quintic with three parameters” in Demos for graph and cograph of calculus functions.

Abmath content


Abmath includes most of the ideas about language in the Handbook (rewritten and expanded) and adds a lot of new material.


  1. The languages of math. Article in abmath. Has links to the other articles about language.
  2. Syntactic and semantic thinkers. Gyre&Gimble post.
  3. Syntax trees in mathematicians’ brains. Gyre&Gimble post.
  4. A visualization of a computation in tree form.Gyre&Gimble post.
  5. Visible algebra I. Gyre&Gimble post.
  6. Algebra is a difficult foreign language. Gyre&Gimble post.
  7. Presenting binops as trees. Gyre&Gimble post.
  8. Moths to the flame of meaning. How linguistics students also have trouble with syntax.
  9. Varieties of mathematical prose, by Atish Bagchi and Charles Wells.

To do:

The language articles would greatly benefit from more illustrations. In parti­cular:

  • G&G contains several articles about using syntax trees (items 3, 4, 5 and 7 above) to understand algebraic expressions. A syntax tree makes the meaning of an algebraic expression much more transparent than the usual one-dimensional way of writing it.
  • Several items in the abmath article More about the language of math, for example the entries on parenthetic assertions and postconditions could benefit from a diagrammatic representation of the relation between phrases in a sentence and semantics (or how the phrases are spoken).
  • The articles on Names and Alphabets could benefit from providing spoken pronunciations of many words. But what am I going to do about my southern accent?
  • The boxed example of change in context as you read a proof in More about the language of math could be animated as you click through the proof. *Sigh* The prospect of animating that example makes me tired just thinking about it. That is not how grasshoppers read proofs anyway.

Understanding and doing math

Abmath discusses how we understand math and strategies for doing math in some detail. This part is based on my own observations during 35 years of teaching, as well as extensive reading of the math ed literature. The math ed literature is usually credited in footnotes.


Math objects and math structures

Understanding how to think about mathematical objects is, I believe, one of the most difficult hurdles newbies have to overcome in learning abstract math. This is one area that the math ed community has focused on in depth.

The first two links below are take you to the two places in abmath that discuss this problem. The first article has links to some of the math ed literature.


To do: Everything is a math object

An important point about math objects that needs to be brought out more is that everything in math is a math object. Obviously math structures are math objects. But the symbol “$\leq$” in the statement “$35\leq45$” denotes a math object, too. And a proof is a math object: A proof written on a blackboard during a lecture does not look like it is an instance of a rigorously defined math object, but most mathe­maticians, including me, believe that in principle such proofs can be transformed into a proof in a formal logical system. Formal logics, such as first order logic, are certainly math objects with precise mathematical definitions. Definitions, math expressions and theorems are math objects, too. This will be spelled out in a later post.

To do: Bring in modern ideas about math structure

Classically, math structures have been presented as sets with structure, with the structure being described in terms of subsets and functions. My chapter on math structures only waves a hand at this. This is a decidedly out-of-date way of doing it, now that we have category theory and type theory. I expect to post about this in order to clarify my thinking about how to introduce categorical and type-theoretical ideas without writing a whole book about it.

Particular math structures

Abmath includes discussions
of the problems students have with certain parti­cular types of structures. These sections talk mostly about how to think about these structure and some parti­cular misunder­standings students have at the most basic levels.

These articles are certainly not proper intro­ductions to the structures. Abmath in general is like that: It tells students about some aspects of math that are known to cause them trouble when they begin studying abstract math. And that is all it does.


To do:

  • I expect to write similar articles about groups, spaces and categories.
  • The idea about groups is to mention a few things that cause trouble at the very beginning, such as cosets, quotients and homomorphisms (which are all obviously related to each other), and perhaps other stumbling blocks.
  • With categories the idea is to stomp on misconceptions such as that the arrows have to be functions and to emphasize the role of categories in allowing us to define math structures in terms of their relations with other objects instead of in terms with sets.
  • I am going to have more trouble with spaces. Perhaps I will show how you can look at the $\epsilon$-$\delta$ definition of continuous functions on the reals and “discover” that they imply that inverse images of open sets are open, thus paving the way for the family-of-subsets definition of a topoogy.
  • I am not ruling out other particular structures.


This chapter covers several aspects of proofs that cause trouble for students, the logical aspects and also the way proofs are written.

It specifically does not make use of any particular symbolic language for logic and proofs. Some math students are not good at learning languages, and I didn’t see any point in introducing a specific language just to do rudimentary discussions about proofs and logic. The second link below discusses linguistic ability in connection with algebra.

I taught logic notation as part of various courses to computer engineering students and was surprised to discover how difficult some students found using (for example) $p+q$ in one course and $p\vee q$ in another. Other students breezed through different notations with total insouciance.


To do:

Much of the chapter on proofs is badly written. When I get around to upgrading it to abmath 2.0 I intend to do a thorough rewrite, which I hope will inspire ideas about how to conceptually improve it.

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 2.5 License.

Send to Kindle


The emerging theory of how the brain works gives us a new language to us for discussing how we teach, learn and communicate math.


Our minds have many functionalities.  They are implemented by what I called modules in Math and modules of the mind because I don’t understand very much about what cognitive scientists have learned about how these functionalities are carried out.  They talk about a particular neuron, a collection of neurons, electrical charges flowing back and forth, and so on, and it appears there is no complete agreement about these ideas.

The functions the modules implement are physical structures or activities in the brain.  At a certain level of abstraction we can ignore the mechanism.

Most modules carry out functionalities that are hidden from our consciousness.

  • When we walk, the walking is carried out by a module that operates without our paying (much) attention to it.
  • When we recognize someone, the identity of the person pops into our consciousness without us knowing how it got there.  Indeed, we cannot introspect to see how the process was carried out; it is completely hidden.

Reasoning, for example if you add 56 and 49 in your head, has part of the process visible to your introspection, but not all of it.  It uses modules such as the sum of 9 and 6 which feel like random access memory.  When you carry the addition out, you (or at least I) are conscious of the carry: you are aware of it and aware of adding it to 9 to get 10.

Good places to find detailed discussion of this hiddenness are references [2] and [4] below.


Math ed people have talked for years about the technique of chunking in doing math.

  • You see an algebraic expression, you worry about how it might be undefined, you gray out all of it except the denominator and inspect that, and so on.  (This should be the subject of a Mathematica demo.)
  • You look at a diagram in the category of topological spaces.  Each object in the diagram stands for a whole, even uncountably infinite, space with lots of open and closed subsets and so on, but you think of it just as a little pinpoint in the diagram to discover facts about its relationship with other spaces.  You don’t look inside the space unless you have to to verify something.

Students have a hard time doing that.  When an experienced mathematician does this, they are very likely to chunk subconsciously; they don’t think, “Now I am chunking”.  Nevertheless, you can call it to their attention and they will be aware of the process.

There are modules that perform chunking whose operation you cannot be aware of even if you think about it.  Here are two examples.

Example 1. Consider these two sentences from [2], p. 137:

  • “I splashed next to the bank.”
  • “There was a run on the bank.”

When you read the first one you visualize a river bank.  When you read the second one you visualize a bank as an institution that handles money.  If these two sentences were separated by a couple of paragraphs, or even a few words, in a text you are likely not to notice that you have processed the same word in two different ways.  (When they are together as above it is kind of blatant.)

The point is the when you read each sentence your brain directly presents you with the proper image in each case (different ones as appropriate).  You cannot recover the process that did that (by introspection, anyway).

Example 2. I discussed the sentence below in the Handbook.  The sentence appears in references [3].

…Richard Darst and Gerald Taylor investigated the
differentiability of functions f^p (which for our
purposes we will restrict to (0,1)) defined for
each p\geq1 by

In this sentence, the identical syntax (a,b) appears twice; the first occurrence refers to the open interval from 0 to 1 and the second refers to the GCD of integers m and n.  When I first inserted it into the Handbook’s citation list, I did not notice that (I was using it for another phenomenon, although now I have forgotten what it was).  Later I noticed it.  My mind preprocessed the two occurrences of the syntax and threw up two different meanings without my noticing it.

Of course, “restricting to (0, 1)” doesn’t make sense if (0, 1) means the GCD of 0 and 1, and saying “(m, n) = 1doesn’t make sense if (m, n) is an interval.  This preprocessing no doubted came to its two different conclusions based on such clues, but I claim that this preprocessing operated at a much deeper level of the brain than the preprocessing that results in your thinking (for example) of a topological space as a single unstructured object in a category.

This phenomenon could be called prechunking.  It is clearly a different phenomenon that zooming in on a denominator and then zooming out on the whole expression as I described in [1].

This century’s metaphor

In the nineteenth century we came up with a machine metaphor for how we think.  In the twentieth century the big metaphor was our brain is a computer.  This century’s metaphor is that of a bunch a processes in our brain and in our body all working simultaneously, mostly out of our awareness, to enable us to live our life, learn things, and just as important (as Davidson [4] points out) to unlearn things.  But don’t think we have Finally Discovered The Last Metaphor.


  1. Zooming and chunking in abstractmath.org.
  2. Mark Changizi, The vision revolution.  Benbella Books, 2009.
  3. Mark Frantz, “Two functions whose powers make fractals”.  American Mathematical Monthly, v 105, pp 609–617 (1998).
  4. Cathy N. Davidson, Now you see it.  Viking Penguin, 2011.  Chapters 1 and 2.
  5. Math and modules of the mind (previous post).
  6. Cognitive science in Wikipedia.
  7. Charles Wells, The handbook of mathematical discourse, Infinity Publishing Company, 2003.
Send to Kindle


Mark Meckes recently wrote (private communication):

I’m teaching a fairly new transition course at Case this term, which involves explicitly teaching students the basics of mathematical English along with the obvious things like logic and proof techniques.  I had a student recently ask about how to interpret “A unless B”.  After a fairly lively discussion in class today, we couldn’t agree on the truth table for this statement, and concluded in the end that “unless” is best avoided in mathematical writing.  I checked the Handbook of Mathematical Discourse to see if you had anything to say about it there, but there isn’t an entry for it.  So, are you aware of a standard interpretation of “unless” in mathematical English?

I did not consider  “unless” while writing HMD.   What should be done to approach a subject like this is to

  • think up examples  (preferably in a bull session with other mathematicians) and try to understand what they mean logically, then
  • do an extensive research of the mathematical literature to see if you can find examples that do and do not correspond  with your tentative understanding.  (Usually you find other uses besides the one you thought of, and sometimes you will discover that what you came up with is completely wrong.)  

What follows is an example of this process.

I can think of three possible meanings for “P unless Q”:

1.  “P if and only if not Q”,
2.  “not Q implies P”
3.  “not P implies Q”.

An example that satisfies (1) is “x^2-x is positive unless 0 \leq x \leq 1“.  I have said that specific thing to my classes — calculus students tend not to remember that the parabola is below the line y=x on that interval. (And that’s the way you should show them — draw a picture, don’t merely lecture.  Indeed, make them draw a picture.)

An example of (2) that is not an example of (1) is “x^2-x is positive unless x = 1/2“.  I don’t think anyone would say that, but they might say “x^2-x is positive unless, for example, x = 1/2“.  I would say that is a correct statement in mathematical English.  I guess the phrase “for example” translates into telling you that this is a statement of form “Q implies not P”, where Q is now “x = 1/2”.   Using the contrapositive, that is equivalent to “P implies not Q”, but that is neither (2) nor (3).

An example of (3) that is not an example of (1) is “x^2-x is positive unless -1 < x < 1“.  I think that any who said that (among math people) would be told that they are wrong, because for example (\frac{-1}{2})^2-\frac{-1}{2} = \frac{3}{4}.  That reaction amounts to saying that (3) is not a correct interpretation of “P unless Q”.

Because of examples like these, my conjecture is that “P unless Q” means “P if and only if not Q”.  But to settle this point requires searching for “unless” in the math literature and seeing if you can find instances where “P unless Q” is not equivalent to “P if and only if not Q”.  (You could also see what happens with searching for “unless” and “example” close together.)

Having a discussion such as the above where you think up examples can give you a clue, but you really need to search the literature.  What I did with the Handbook is to search JStor, available online at Case.  I have to say I had definite opinions about several usages that were overturned during the literature search. (What “brackets” means is an example.)

My proxy server at Case isn’t working right now but when I get it repaired I will look into this question.

Send to Kindle

Representations 2


In a recent post I began a discussion of the mental, physical and mathematical representations of a mathematical object. The discussion continues here. Mathematicians, linguists, cognitive scientists and math educators have investigate some aspects of this topic, but there are many subtle connections between the different ideas which need to be studied.

I don’t have any overall theoretical grasp of these relationships. What I will do here is grope for an overall theory by mentioning a whole bunch of fine points. Some of these have been discussed in the literature and some (as far as I know) have not been discussed.  Many of them (I hope)  can be described as “an obvious fact about representations but no one has pointed it out before”.  Such fine points could be valuable; I think some scholars who have written about mathematical discourse and math in the classroom are not aware of many of these facts.

I am hoping that by thrashing around like this here (for graphs of functions) and for other concepts (set, function, triangle, number …) some theoretical understanding may emerge of what it means to understand math, do math, and talk about math.

The graph of a function

Let’s look at the graph of the function {y=x^3-x}.

What you are looking at is a physical representation of the graph of the function. The graph creates in your brain a mental representation of the graph of the function. These are subtly related to each other and to the mathematical definition of the graph.

Fine points

  1. The mathematical definition [2] of the graph of this function is: The set of ordered pairs of numbers {(x,x^3-x)} for all real numbers {x}.
  2. In the physical representation, each point {(x,x^3-x)} is shown in a location determined by the conventional {x-y} coordinate system, which uses a straight-line representation of the real numbers with labels and ticks.
    • The physical representation makes use of the fact that the function is continuous. It shows the graph as a curving line rather than a bunch of points.
    • The physical representation you are looking at is not the physical representation I am looking at. They are on different computer screens or pieces of paper. We both expect that the representations are very similar, in some sense physically isomorphic.
    • “Location” on the physical representation is a physical idea. The mathematical location on the mathematical graph is essentially the concept of the physical location refined as the accuracy goes to infinity. (This last statement is a metaphor attached to a genuine mathematical construction, for example Cauchy sequences.)
  3. The mathematical definition of “graph” and the physical representation are related by a metaphor. (See Note 1.)
    • The physical curve in blue in the picture corresponds via the metaphor to the graph in the mathematical sense: in this way, each location on the physical curve corresponds to an ordered pair of the form {(x,x^3-x)}.
    • The correspondence between the locations and the pairs is imperfect. You can’t measure with infinite accuracy.
    • The set of ordered pairs {(x,x^3-x)} form a parametrized curve in the mathematical sense. This curve has zero thickness. The curve in the physical representation has positive thickness.
    • Not all the points in the mathematical graph actually occur on the physical curve: The physical curve doesn’t show the left and right infinite tails.
    • The physical curve is drawn to show some salient characteristics of the curve, such as its extrema and inflection points. This is expected by convention in mathematical writing. If the graph had left out a maximum, for example, the author would be constrained (by convention!) to say so.
    • An experienced mathematician or advanced student understands the fine points just listed. A newbie may not, and may draw false conclusions about the function from the graph. (Note 2.)
  4. If you are a mathematician or at least a math student, seeing the physical graph shown above produces a mental image(see Note 3.) of the graph in your mind.
  5. The mathematical definition and the mental image are connected by a metaphor. This is not the same metaphor as the one that connects the physical representation and the mathematical definition.
    • The curve I visualize in my mental representation has an S shape and so does the physical representation. Or does it? Isn’t the S-ness of the shape a fact I construct mentally (without consciously intending to do so!)?
    • Does the curve in the mental rep have thickness? I am not sure this is a meaningful question. However, if you are a sufficiently sophisticated mathematician, your mental image is annotated with the fact that the curve has zero thickness. (See Note 4.)
    • The curve in your mental image of the curve may very well be blue (just because you just looked at my picture) but you must have an annotation to the effect that that is irrelevant! That is the essence of metaphor: Some things are identified with each other and others are emphatically not identified.
    • The coordinate axes do exist in the physical representation and they don’t exist in the mathematical definition of the graph. Of course they are implied by the definition by the properties of the projection functions from a product. But what about your mental image of the graph? My own image does not show the axes, but I do “know” what the coordinates of some of the points are (for example, {(-1,0)}) and I “see” some points (the local maximum and the local minimum) whose coordinates I can figure out.


1. This is metaphor in the sense lately used by cognitive scientists, for example in [6]. A metaphor can be described roughly as two mental images in which certain parts of one are identified with certain parts of another, in other words a pushout. The rhetorical use of the word “metaphor” requires it to be a figure of speech expressed in a certain way (the identification is direct rather than expressed by “is like” or some such thing.)  In my use in this article a metaphor is something that occurs in your brain.  The form it takes in speech or writing is not relevant.

2. I have noticed, for example, that some students don’t really understand that the left and right tails go off to infinity horizontally as well as vertically.   In fact, the picture above could mislead someone into thinking the curve has vertical asymptotes: The right tail looks like it goes straight up.  How could it get to x equals a billion if it goes straight up?

3. The “mental image” is of course a physical structure in your brain.  So mental representations are physical representations.

4. I presume this “annotation” is some kind of physical connection between neurons or something.  It is clear that a “mental image” is some sort of physical construction or event in the brain, but from what little I know about cognitive science, the scientists themselves are still arguing about the form of the construction.  I would appreciate more information on this. (If the physical representation of mental images is indeed still controversial, this says nothing bad about cognitive science, which is very new.)


[1] Mental Representations in Math (previous post).

[2] Definitions (in abstractmath).

[3] Lakoff, G. and R. E. Núñez (2000), Where Mathematics Comes From. Basic Books.

Send to Kindle

Mental, Physical and Mathematical Representations

For a given mathematical object, a mathematician may have:

  • A mental representation of the object. This can be a metaphor, a mental image, or a kinesthetic understanding of the object.
  • A physical representation of the object. This may be a (physical) picture or drawing or three-dimensional model of the object.
  • A mathematical definition and one or more mathematical representations for the object. Such a representation is itself a mathematical object.

The boldface things in this list are related to each other in lots of ways, and they are fuzzy and overlap and don’t include every phenomenon connected with a math object.

I have written about these things ([1], [2], [3], [4]). So have lots of other people. In this post I summarize these ideas. I expect to write about particular examples later on and will use this as a reference.

Two Examples

The following examples point out a few of the relationships between the ideas in boldface above. There is much more to understand.

Function as black box

The idea that a function is a black box or machine with input and output is a metaphor for a function.

A is a metaphor for B means that A and B are cognitively pasted together in such a way that the behavior of A is in many ways like the behavior of B. Such a thing is both useful and dangerous, dangerous because there will be ways in which A behaves that suggest inappropriate ideas about B.

The function as machine is a good metaphor: for example functional composition involves connecting the output of one machine to the input of another, and the inverse function is like running the machine backward.

The function as machine is a bad metaphor: For example, it is wrong to think you could build a machine to calculate any given function exactly. But you can still imagine such a machine, given by a specification (it outputs the value of the function at a given input) and then, in your imagination, connecting the input of one to the output of another must perforce calculate the composite of the corresponding functions.

Like any metaphor, this is a mental representation. That means the metaphor has a physical instantiation in your brain. So a metaphor has a physical representation.

Different people won’t have quite the same concept of a particular metaphor. So a metaphor will have lots of slightly different physical representations, but mathematicians form a community, and communication between mathematicians fine-tunes the different physical instantiations so that they correspond more closely to each other. This is the sense in which mathematical objects have a shared existence in a community as Reuben Hersh has suggested.

A function is a mathematical object, which can be rigorously specified as a set of ordered pairs together with a domain and a codomain. There is a cognitive relationship between the concepts of function as math object and function as black box with input and output.


A triangle can be drawn, or created on a computer and a physical image printed out. You may also have a mental image of the triangle.

The physical and the mental images are not the same thing, but they are definitely related. The relationship is mediated by the neuronal circuitry behind your retinas, which performs a highly sophisticated transformation of the pixels on your retina into an organized physical structure in your brain, connected to various other neurons.

This circuitry exists because it helps us get a useful understanding of the world through our eyes. So a picture of a triangle takes advantage of pre-existing neuron structure to generate a useful mental representation that helps us understand and prove things about triangles.

This mental representation also lives in a community of mathematician. Like any community, it has subgroups with “dialects” — varying understanding of representation.

For example, a mathematician who looks at the triangle below sees a triangle that looks like a right triangle. A student sees a triangle that is a right triangle.

This is “sees” in the sense of what their brain reports after all that processing. The mathematician’s brain connects the “triangle I am seeing” module (in their brain) to the “looks like a right triangle” module, but does not connect it to the “is a right triangle” module because they don’t see any statement in the surrounding text that it is a right triangle. The student, on the other hand, fallaciously makes the connection to “is a right triangle” directly.

In some sense, a student who does not make that connection directly is already a mathematician.

A triangle also exists as a mathematical object in your and my brain. It is described by a formal mathematical definition. The pictures of triangles you see above do not fit this definition. For one thing, the line segments in the pictures have thickness. But the pictures trigger a reaction in your neurons that causes your brain to cognitively paste together the line segments in the drawing to the segments required by the formal definition. This is a kind of metaphor of concrete-to-abstract that connects drawings to math objects that mathematicians use all the time.

Note that this “concrete-to-abstract metaphor” itself has a physical existence in your brain.  It drops, for example, the property of thickness that the line segments in the drawing have when matching them (in the metaphor) with the line segments in the corresponding abstract triangle.  On the other hand, it preserves the sense the all three angles in the triangle are acute.  The abstract mathematical concept of triangle (the generic triangle) has no requirement on the angles except that they add up to pi.


The discussions above describe a few of the complex and subtle relationships that exist between

  • Mental representations of math objects
  • Physical representations of math objects
  • Formally defined math objects and their formally defined representations.

I have purported to discuss how mathematics is understood (especially in connection with language) in several articles and a book but only a few of the relationships I just described are mentioned in any of those articles. Perhaps one or two things I said caused you to react: “Actually, that’s obviously true but I never thought of it before”. (Much the way I had mathematicians in the ’60’s tell me, “I see what you mean that addition is a function of two variables, but I never thought of it that way before”.) (I was a brash category theorist wannabe then.)

A lot of research has been done on understanding math, and some research has been done on mathematical discourse. But what has been done has merely exposed the fin of the shark.


[1] Images and metaphors (in abstractmath).

[2] Representations and Models (in abstractmath).

[3] Mathematical Concepts (previous blog).

[4] Mental Representations in Math (previous blog).

Send to Kindle