Tag Archives: math structure

Abstraction and axiomatic systems

Abstraction and the axiomatic method

This post will become an article in abstractmath.org.

Abstraction

An abstraction of a concept $C$ is a concept $C’$ with these properties:

  • $C’$ includes all instances of $C$ and
  • $C’$ is constructed by taking as axioms certain assertions that are true of all instances of $C$.

There are two major situations where abstraction is used in math.

  • $C$ may be a familiar concept or property that has not yet been given a math definition.
  • $C$ may already have a mathe­matical definition using axioms. In that case the abstraction will be a generalization of $C$. 

In both cases, the math definition may allow instances of $C’$ that were not originally thought of as being part of $C$.

Example: Relations

Mathematicians have made use of relations between math objects since antiquity.

  • For real numbers $r$ and $s$. “$r\lt x$” means that $r$ is less than $s$. So the statement “$5\lt 7$” is true, but the statement “$7\lt 5$” is false. We say that “$\lt$” is a relation on the real numbers. Other relations on real numbers denoted by symbols are “$=$” and “$\leq$”.
  • Suppose $m$ and $n$ are positive integers. $m$ and $n$ are said to be relatively prime if the greatest common divisor of $m$ and $n$ is $1$. So $5$ and $7$ are relatively prime, but $15$ and $21$ are not relatively prime. So being relatively prime is a relation on positive integers. This is a relation that does not have a commonly used symbol.
  • The concept of congruence of triangles has been used for a couple of millenia. In recent centuries it has been denoted by the symbol “$\cong$”. Congruence is a relation on triangles.

One could say that a relation is a true-or-false statement that can be made about a pair of math objects of a certain type. Logicians have in fact made that a formal definition. But when set theory came to be used around 100 years ago as a basis for all definitions in math, we started using this definition:

A relation on a set $S$ is a set $\alpha$ of ordered pairs of elements of $S$.

“$\alpha$” is the Greek letter alpha.

The idea is that if $(s,t)\in\alpha$, then $s$ is related by $\alpha$ to $t$, then $(s,t)$ is an element of $\alpha$, and if $s$ is not related by $\alpha$ to $t$, then $(s,t)$ is not an element of $\alpha$. That abstracts the everyday concept of relationship by focusing on the property that a relation either holds or doesn’t hold between two given objects.

For example, the less-than relation on the set of all real numbers $\mathbb{R}$ is the set \[\alpha:=\{(r,s)|r\in\mathbb{R}\text{ and }s\in\mathbb{R}\text{ and }r\lt s\}\] In other words, $r\lt s$ if and only if $(r,s)\in \alpha$.

Example

A consequence of this definition is that any set of ordered pairs is a relation. Example: Let $\xi:=\{(2,3),(2,9),(9,1),(9,2)\}$. Then $\xi$ is a relation on the set $\{1,2,3,9\}$. Your reaction may be: What relation IS it? Answer: just that set of ordered pairs. You know that $2\xi3$ and $2\xi9$, for example, but $9\xi1$ is false. There is no other definition of $\xi$.

Yes, the relation $\xi$ is weird. It is an arbitrary definition. It does not have any verbal description other than listing the element of $\xi$. It is probably useless. Live with it.

The symbol “$\xi$” is a Greek letter. It looks weird, so I used it to name a weird relation. Its upper case version is “$\Xi$”, which is even weirder. I pronounce “$\xi$” as “ksee” but most mathematicians call it “si” or “zi” (rhyming with “pie”).

Defining a relation as any old set of ordered pairs is an example of a reconstructive generalization.

$n$-ary relations

Years ago, mathematicians started coming up with things that were like relations but which involved more than two elements of a set.

Example

Let $r$, $s$ and $t$ be real numbers. We say that “$s$ is between $r$ and $t$” if $r\lt s$ and $s\lt t$. Then betweenness is a relation that is true or false about three real numbers.

Mathematicians now call this a ternary relation. The abstract definition of a ternary relation is this: A ternary relation on a set $S$ is a set of ordered triple of elements of $S$. This is an reconstructive generalization of the concept of relation that allows ordered triples of elements as well as ordered pairs of elements.

In the case of betweenness, we have to decide on the ordering. Let us say that the betweenness relation holds for the triple $(r,s,t)$ if $r\lt s$ and $s\lt t$. So $(4,5,7)$ is in the betweenness relation and $(4,7,5)$ is not.

You could argue that in the sentence, “$s$ is between $r$ and $t$”, the $s$ comes first, so that we should say that the betweenness relation (meaning $r$ is between $s$ and $t$) holds for $(r,s,t)$ if $s\lt r$ and $r\lt t$. Well, when you write an article you can write it that way. But I am writing this article.

Nowadays we talk about $n$-ary relations for any positive integer $n$. One consequence of this is that if we want to talk just about sets of ordered pairs we must call them binary relations.

When I was a child there was only one kind of guitar and it was called “a guitar”. (My older cousin Junior has a guitar, but I had only a plastic ukelele.) Some time in the fifties, electrically amplified guitars came into being, so we had to refer to the original kind as “acoustic guitars”. I was a teenager when this happened, and being a typical teenager, I was completely contemptuous of the adults who reacted with extreme irritation at the phrase “acoustic guitar”.

The axiomatic method

The axiomatic method is a technique for studying math objects of some kind by formulating them as a type of math structure. You take some basic properties of the kind of structure you are interested in and set them down as axioms, then deduce other properties (that you may or may not have already known) as theorems. The point of doing this is to make your reasoning and all your assumptions completely explicit.

Nowadays research papers typically state and prove their theorems in terms of math structures defined by axioms, although a particular paper may not mention the axioms but merely refer to other papers or texts where the axioms are given.  For some common structures such as the real numbers and sets, the axioms are not only not referenced, but the authors clearly don’t even think about them in terms of axioms: they use commonly-known properties (or real numbers or sets, for example) without reference.

The axiomatic method in practice

Typically when using the axiomatic method some of these things may happen:

  • You discover that there are other examples of this system that you hadn’t previously known about.  This makes the axioms more broadly applicable.
  • You discover that some properties that your original examples had don’t hold for some of the new examples.  Depending on your research goals, you may then add some of those properties to the axioms, so that the new examples are not examples any more.
  • You may discover that some of your axioms follow from others, so that you can omit them from the system.

Example: Continuity

A continuous function (from the set of real numbers to the set of real numbers) is sometimes described as a function whose graph you can draw without lifting your chalk from the board.  This is a physical description, not a mathe­matical definition.

In the nineteenth century, mathe­ma­ticians talked about continuous functions but became aware that they needed a rigorous definition.  One possibility was functions given by formulas, but that didn’t work: some formulas give discontinuous functions and they couldn’t think of formulas for some continuous functions.

This description of nineteenth century math is an oversimpli­fication.

Cauchy produced the definition we now use (the epsilon-delta definition) which is a rigorous mathe­matical version of the no-lifting-chalk idea and which included the functions they thought of as continuous.

To their surprise, some clever mathe­maticians produced examples of some weird continuous functions that you can’t draw, for example the sine blur function.  In the terminology in the discussion of abstraction above, the abstraction $C’$ (epsilon-delta continuous functions) had functions in it that were not in $C$ (no-chalk-lifting functions.) On the other hand, their definition now applied to functions between some spaces besides the real numbers, for example the complex numbers, for which drawing the graph without lifting the chalk doesn’t even make sense.

Example: Rings

Suppose you are studying the algebraic properties of numbers.  You know that addition and multiplication are both associative operations and that they are related by the distributive law:  $x(y+z)=xy+xz$. Both addition and multiplication have identity elements ($0$ and $1$) and satisfy some other properties as well: addition forms a commutative group for example, and if $x$ is any number, then $0\cdot x=0$.

One way to approach this problem is to write down some of these laws as axioms on a set with two binary operations without assuming that the elements are numbers. In doing this, you are abstracting some of the properties of numbers.

Certain properties such as those in the first paragraph of this example were chosen to define a type of math structure called a ring. (The precise set of axioms for rings is given in the Wikipedia article.)

You may then prove theorems about rings strictly by logical deduction from the axioms without calling on your familiarity with numbers.

When mathematicians did this, the following events occurred:

  • They discovered systems such as matrices whose elements are not numbers but which obey most of the axioms for rings.
  • Although multiplication of numbers is commutative, multiplication of matrices is not commutative.
  • Now they had to decide whether to require commutative of multiplication as an axioms for rings or not.  In this example, historically, mathe­maticians decided not to require multi­plication to be commutative, so (for example) the set of all $2\times 2$ matrices with real entries is a ring.
  • They then defined a commutative ring to be a ring in which multi­plication is commutative.
  • So the name “commutative ring” means the multiplication is commutative, because addition in rings is always commutative. Mathematical names are not always transparent.

  • You can prove from the axioms that in any ring, $0 x=0$ for all $x$, so you don’t need to include it as an axiom.

Nowadays, all math structures are defined by axioms.

Other examples

  • Historically, the first example of something like the axiomatic method is Euclid’s axiomatization of geometry.  The axiomatic method began to take off in the late nineteenth century and now is a standard tool in math.  For more about the axiomatic method see the Wikipedia article.
  • Partitions. and equivalence
    relations
    are two other concepts that have been axiomatized. Remarkably, although the axioms for the two types of structures are quite different, every partition is in fact an equivalence relation in exactly one way, and any equivalence relation is a partition in exactly one way.

Remark

Many articles on the web about the axiomatic method emphasize the representation of the axiom system as a formal logical theory (formal system). 
In practice, mathematicians create and use a particular axiom system as a tool for research and understanding, and state and prove theorems of the system in semi-formal narrative form rather than in formal logic.



Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 2.5 License.

Send to Kindle

Improving abstractmath.org

This post discusses some ideas I have for improving abstractmath.org.

Handbook of mathematical discourse

The Handbook was kind of a false start on abmath, and is the source of much of the material in abmath. It still contains some material not in abmath, parti­cularly the citations.

By citations I mean lexicographical citations: examples of the usage from texts and scholarly articles.

I published the Handbook of mathe­ma­tical discourse in 2003. The first link below takes you to an article that describes what the Handbook does in some detail. Briefly, the Handbook surveys the use of language in math (and some other things) with an emphasis on the problems it causes students. Its collection of citations of usage could some day could be the start of an academic survey of mathematical language. But don’t expect me to do it.

Links

The Handbook exists as a book and as two different web versions. I lost the TeX source of the Handbook a few years after I published the book, so none of the different web versions are perfect. Version 2 below is probably the most useful.

  1. Handbook of mathe­ma­tical discourse. Description.
  2. Handbook of mathe­ma­tical discourse. Hypertext version without pictures but with active internal links. Some links don’t work, but they won’t be repaired because I have lost the TeX input files.
  3. Handbook of mathe­ma­tical discourse. Paperback.
  4. Handbook of mathematical discourse. PDF version of the printed book, including illustrations and citations but without hyperlinks.
  5. Citations for the paperback version of the Handbook. (The hypertext version and the PDF version include the citations.)

Abmath

Soon after the Handbook was published, I started work on abstractmath.org, which I abbreviate as abmath. It is intended specifically for people beginning to study abstract math, which means roughly post-calculus. I hope their teachers will read it, too. I had noticed when I was teaching that many students hit a big bump when faced with abstraction, and many of them never recovered. They would typically move into another field, often far away from STEM stuff.

Links

These abmath articles give more detail about the purpose of this website and the thinking behind the way it is presented:

Presentation of abmath

Informal

Abmath is written for students of abstract math and other beginners to tell them about the obstacles they may meet up with in learning abstract math. It is not a scholarly work and is not written in the style of a scholarly work. There is more detail about its style in my rant in Attitude.

Scholarly works should not be written in the style of a scholarly work, either.

Links

To do:

Every time I revise an article I find myself rewriting overly formal parts. Fifty years of writing research papers has taken its toll. I must say that I am not giving this informalization stuff very high priority, but I will continue doing it.

No citations

One major difference concerns the citations in the Handbook. I collected these in the late nineties by spending many hours at Jstor and looking through physical books. When I started abmath I decided that the website would be informal and aimed at students, and would contain few or no citations, simply because of the time it took to find them.

Boxouts and small screens

The Handbook had both sidebars on every page of the paper version containing a reference index to words on that page, and also on many pages boxouts with comments. It was written in TeX. I had great difficulty using TeX to control the placement of both the sidebars and especially the boxouts. Also, you couldn’t use TeX to let the text expand or contract as needed by the width of the user’s screen.

Abmath uses boxouts but not sidebars. I wrote Abmath using HTML, which allows it to be presented on large or small screens and to have extensive hyperlinks.
HTML also makes boxouts easy.

The arrival of tablets and i-pods has made it desirable to allow an abmath page to be made quite narrow while still readable. This makes boxouts hard to deal with. Also I have gotten into the habit of posting revisions to articles on Gyre&Gimble, whose editor converts boxouts into inline boxes. That can probably be avoided.

To do:

I have to decide whether to turn all boxouts into inline small-print paragraphs the was you see them in this article. That would make the situation easier for people reading small screens. But in-line small-print paragraphs are harder to associate to the location you want them to refer, in contrast to boxouts.

Abmath 2.0

For the first few years, I used Microsoft Word with MathType, but was plagued with problems described in the link below. Then I switched to writing directly in HTML. The articles of abmath labeled “abstractmath.org 2.0” are written in this new way. This makes the articles much, much easier to update. Unfortunately, Word produces HTML that is extraordinarily complicated, so transforming them into abmath 2.0 form takes a lot of effort.

Link

Illustrations

Abmath does not have enough illustrations and diagrams. Gyre&Gimble has many posts with static illustrations, some of them innovative. It also has some posts with interactive demos created with Mathematica. These demos require the reader to download the CDF Player, which is free. Unfortunately, it is available only for Windows, Mac and Linux, which precludes using them on many small devices.

Links

To do:

  • Create new illustrations where they might be useful, and mine Gyre&Gimble and other sources.
  • There are many animated GIFs out there in the math cloud. I expect many of them are licensed under Creative Commons so that I can use them.
  • I expect to experiment with converting some of the interactive CFD diagrams that are in Gyre&Gimble into animated GIFs or AVIs, which as far as I know will run on most machines. This will be a considerable improvement over static diagrams, but it is not as good as interactive diagrams, where you can have several sliders controlling different variables, move them back and forth, and so on. Look at Inverse image revisited. and “quintic with three parameters” in Demos for graph and cograph of calculus functions.

Abmath content

Language

Abmath includes most of the ideas about language in the Handbook (rewritten and expanded) and adds a lot of new material.

Links

  1. The languages of math. Article in abmath. Has links to the other articles about language.
  2. Syntactic and semantic thinkers. Gyre&Gimble post.
  3. Syntax trees in mathematicians’ brains. Gyre&Gimble post.
  4. A visualization of a computation in tree form.Gyre&Gimble post.
  5. Visible algebra I. Gyre&Gimble post.
  6. Algebra is a difficult foreign language. Gyre&Gimble post.
  7. Presenting binops as trees. Gyre&Gimble post.
  8. Moths to the flame of meaning. How linguistics students also have trouble with syntax.
  9. Varieties of mathematical prose, by Atish Bagchi and Charles Wells.

To do:

The language articles would greatly benefit from more illustrations. In parti­cular:

  • G&G contains several articles about using syntax trees (items 3, 4, 5 and 7 above) to understand algebraic expressions. A syntax tree makes the meaning of an algebraic expression much more transparent than the usual one-dimensional way of writing it.
  • Several items in the abmath article More about the language of math, for example the entries on parenthetic assertions and postconditions could benefit from a diagrammatic representation of the relation between phrases in a sentence and semantics (or how the phrases are spoken).
  • The articles on Names and Alphabets could benefit from providing spoken pronunciations of many words. But what am I going to do about my southern accent?
  • The boxed example of change in context as you read a proof in More about the language of math could be animated as you click through the proof. *Sigh* The prospect of animating that example makes me tired just thinking about it. That is not how grasshoppers read proofs anyway.

Understanding and doing math

Abmath discusses how we understand math and strategies for doing math in some detail. This part is based on my own observations during 35 years of teaching, as well as extensive reading of the math ed literature. The math ed literature is usually credited in footnotes.

Links

Math objects and math structures

Understanding how to think about mathematical objects is, I believe, one of the most difficult hurdles newbies have to overcome in learning abstract math. This is one area that the math ed community has focused on in depth.

The first two links below are take you to the two places in abmath that discuss this problem. The first article has links to some of the math ed literature.

Links

To do: Everything is a math object

An important point about math objects that needs to be brought out more is that everything in math is a math object. Obviously math structures are math objects. But the symbol “$\leq$” in the statement “$35\leq45$” denotes a math object, too. And a proof is a math object: A proof written on a blackboard during a lecture does not look like it is an instance of a rigorously defined math object, but most mathe­maticians, including me, believe that in principle such proofs can be transformed into a proof in a formal logical system. Formal logics, such as first order logic, are certainly math objects with precise mathematical definitions. Definitions, math expressions and theorems are math objects, too. This will be spelled out in a later post.

To do: Bring in modern ideas about math structure

Classically, math structures have been presented as sets with structure, with the structure being described in terms of subsets and functions. My chapter on math structures only waves a hand at this. This is a decidedly out-of-date way of doing it, now that we have category theory and type theory. I expect to post about this in order to clarify my thinking about how to introduce categorical and type-theoretical ideas without writing a whole book about it.

Particular math structures

Abmath includes discussions
of the problems students have with certain parti­cular types of structures. These sections talk mostly about how to think about these structure and some parti­cular misunder­standings students have at the most basic levels.

These articles are certainly not proper intro­ductions to the structures. Abmath in general is like that: It tells students about some aspects of math that are known to cause them trouble when they begin studying abstract math. And that is all it does.

Links

To do:

  • I expect to write similar articles about groups, spaces and categories.
  • The idea about groups is to mention a few things that cause trouble at the very beginning, such as cosets, quotients and homomorphisms (which are all obviously related to each other), and perhaps other stumbling blocks.
  • With categories the idea is to stomp on misconceptions such as that the arrows have to be functions and to emphasize the role of categories in allowing us to define math structures in terms of their relations with other objects instead of in terms with sets.
  • I am going to have more trouble with spaces. Perhaps I will show how you can look at the $\epsilon$-$\delta$ definition of continuous functions on the reals and “discover” that they imply that inverse images of open sets are open, thus paving the way for the family-of-subsets definition of a topoogy.
  • I am not ruling out other particular structures.

Proofs

This chapter covers several aspects of proofs that cause trouble for students, the logical aspects and also the way proofs are written.

It specifically does not make use of any particular symbolic language for logic and proofs. Some math students are not good at learning languages, and I didn’t see any point in introducing a specific language just to do rudimentary discussions about proofs and logic. The second link below discusses linguistic ability in connection with algebra.

I taught logic notation as part of various courses to computer engineering students and was surprised to discover how difficult some students found using (for example) $p+q$ in one course and $p\vee q$ in another. Other students breezed through different notations with total insouciance.

Links

To do:

Much of the chapter on proofs is badly written. When I get around to upgrading it to abmath 2.0 I intend to do a thorough rewrite, which I hope will inspire ideas about how to conceptually improve it.

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 2.5 License.


Send to Kindle