Tag Archives: magma

Naming mathematical objects

Commonword names confuse

Many technical words and phrases in math are ordinary English words ("commonwords") that are assigned a different and precisely defined mathematical meaning.  

  • Group  This sounds to the "layman" as if it ought to mean the same things as "set".  You get no clue from the name that it involves a binary operation with certain properties.  
  • Formula  In some texts on logic, a formula is a precisely defined expression that becomes a true-or-false sentence (in the semantics) when all its variables are instantiated.  So $(\forall x)(x>0)$ is a formula.  The word "formula" in ordinary English makes you think of things like "$\textrm{H}_2\textrm{O}$", which has no semantics that makes it true or false — it is a symbolic expression for a name.
  • Simple group This has a technical meaning: a group with no nontrivial normal subgroup.  The Monster Group is "simple".  Yes, the technical meaning is motivated by the usual concept of "simple", but to say the Monster Group is simple causes cognitive dissonance.

Beginning students come with the (generally subconscious) expectation that they will pick up clues about the meanings of words from connotations they are already familiar with, plus things the teacher says using those words.  They think in terms of refining an understanding they already have.  This is more or less what happens in most non-math classes.  They need to be taught what definition means to a mathematician.

Names that don't confuse but may intimidate

Other technical names in math don't cause the problems that commonwords cause.

Named after somebody The phrase "Hausdorff space" leads a math student to understand that it has a technical meaning.  They may not even know it is named after a person, but it screams "geek word" and "you don't know what it means".  That is a signal that you can find out what it means.  You don't assume you know its meaning. 

New made-up words  Words such as "affine", "gerbe"  and "logarithm" are made up of words from other languages and don't have an ordinary English meaning.  Acronyms such as "QED", "RSA" and "FOIL" don't occur often.  I don't know of any math objects other than "RSA algorithm" that have an acronymic name.  (No doubt I will think of one the minute I click the Publish button.)  Whole-cloth words such as "googol" are also rare.  All these sorts of words would be good to name new things since they do not fool the readers into thinking they know what the words mean.

Both types of words avoid fooling the student into thinking they know what the words mean, but some students are intimidated by the use of words they haven't seen before.  They seem to come to class ready to be snowed.  A minority of my students over my 35 years of teaching were like that, but that attitude was a real problem for them.

Audience

You can write for several different audiences.

Math fans (non-mathematicians who are interested in math and read books about it occasionally) In my posts Explaining higher math to beginners and in Renaming technical conceptsI wrote about several books aimed at explaining some fairly deep math to interested people who are not mathematicians.  They renamed some things. For example, Mark Ronan in Symmetry and the Monster used the phrase "atom" for "simple group" presumably to get around the cognitive dissonance.  There are other examples in my posts.  

Math newbies  (math majors and other students who want to understand some aspect of mathematics).  These are the people abstractmath.org is aimed at. For such an audience you generally don't want to rename mathematical objects. In fact, you need to give them a glossary to explain the words and phrases used by people in the subject area.   

Postsecondary math students These people, especially the math majors, have many tasks:

  • Gain an intuitive understanding of the subject matter.
  • Understand in practice the logical role of definitions.
  • Learn how to come up with proofs.
  • Understand the ins and outs of mathematical English, particularly the presence of ordinary English words with technical definitions.
  • Understand and master the appropriate parts of the symbolic language of math — not just what the symbols mean but how to tell a statement from a symbolic name.

It is appropriate for books for math fans and math newbies to try to give an understanding of concepts without necessary proving theorems.  That is the aim of much of my work, which has more an emphasis on newbies than on fans. But math majors need as well the traditional emphasis on theorem and proof and clear correct explanations.

Lately, books such as Visual Group Theory have addressed beginning math majors, trying for much more effective ways to help the students develop good intuition, as well as getting into proofs and rigor. Visual Group Theory uses standard terminology.  You can contrast it with Symmetry and the Monster and The Mystery of the Prime Numbers (read the excellent reviews on Amazon) which are clearly aimed at math fans and use nonstandard terminology.  

Terminology for algebraic structures

I have been thinking about the section of Abstracting Algebra on binary operations.  Notice this terminology:

boptable

The "standard names" are those in Wikipedia.  They give little clue to the meaning, but at least most of them, except "magma" and "group", sound technical, cluing the reader in to the fact that they'd better learn the definition.

I came up with the names in the right column in an attempt to make some sense out of them.  The design is somewhat like the names of some chemical compounds.  This would be appropriate for a text aimed at math fans, but for them you probably wouldn't want to get into such an exhaustive list.

I wrote various pieces meant to be part of Abstracting Algebra using the terminology on the right, but thought better of it. I realized that I have been vacillating between thinking of AbAl as for math fans and thinking of it as for newbies. I guess I am plunking for newbies.

I will call groups groups, but for the other structures I will use the phrases in the middle column.  Since the book is for newbies I will include a table like the one above.  I also expect to use tree notation as I did in Visual Algebra II, and other graphical devices and interactive diagrams.

Magmas

In the sixties magmas were called groupoids or monoids, both of which now mean something else.  I was really irritated when the word "magma" started showing up all over Wikipedia. It was the name given by Bourbaki, but it is a bad name because it means something else that is irrelevant.  A magma is just any binary operation. Why not just call it that?  

Well, I will tell you why, based on my experience in Ancient Times (the sixties and seventies) in math. (I started as an assistant professor at Western Reserve University in 1965). In those days people made a distinction between a binary operation and a "set with a binary operation on it".  Nowadays, the concept of function carries with it an implied domain and codomain.  So a binary operation is a function $m:S\times S\to S$.  Thinking of a binary operation this way was just beginning to appear in the common mathematical culture in the late 60's, and at least one person remarked to me: "I really like this new idea of thinking of 'plus' and 'times' as functions."  I was startled and thought (but did not say), "Well of course it is a function".  But then, in the late sixties I was being indoctrinated/perverted into category theory by the likes of John Isbell and Peter Hilton, both of whom were briefly at Case Western Reserve University.  (Also Paul Dedecker, who gave me a glimpse of Grothendieck's ideas).

Now, the idea that a binary operation is a function comes with the fact that it has a domain and a codomain, and specifically that the domain is the Cartesian square of the codomain.  People who didn't think that a binary operation was a function had to introduce the idea of the universe (universal algebraists) or the underlying set (category theorists): you had to specify it separately and introduce terminology such as $(S,\times)$ to denote the structure.   Wikipedia still does it mostly this way, and I am not about to start a revolution to get it to change its ways.

Groups

In the olden days, people thought of groups in this way:

  • A group is a set $G$ with a binary operation denoted by juxtaposition that is closed on $G$, meaning that if $a$ and $b$ are any elements of $G$, then $ab$ is in $G$.
  • The operation is associative, meaning that if $a,\ b,\ c\in G$, then $(ab)c=a(bc)$.
  • The operation has a unity element, meaning an element $e$ for which for any element $a\in G$, $ae=ea=a$.
  • For each element $a\in G$, there is an element $b$ for which $ab=ba=e$.

This is a better way to describe a group:

  • A group consist of a nullary operation e, a unary operation inv,  and a binary operation denoted by juxtaposition, all with the same codomain $G$. (A nullary operation is a map from a singleton set to a set and a unary operation is a map from a set to itself.)
  • The value of e is denoted by $e$ and the value of inv$(a)$ is denoted by $a^{-1}$.
  • These operations are subject to the following equations, true for all $a,\ b,\ c\in G$:

     

    • $ae=ea=a$.
    • $aa^{-1}=a^{-1}a=e$.
    • $(ab)c=a(bc)$.

This definition makes it clear that a group is a structure consisting of a set and three operations whose axioms are all equations.  It was formulated by people in universal algebra but you still see the older form in texts.

The old form is not wrong, it is merely inelegant.  With the old form, you have to prove the unity and inverses are unique before you can introduce notation, and more important, by making it clear that groups satisfy equational logic you get a lot of theorems for free: you construct products on the cartesian power of the underlying set, quotients by congruence relations, and other things. (Of course, in AbAl those theorem will be stated later than when groups are defined because the book is for newbies and you want lots of examples before theorems.)

References

  1. Three kinds of mathematical thinkers (G&G post)
  2. Technical meanings clash with everyday meanings (G&G post)
  3. Commonword names for technical concepts (G&G post)
  4. Renaming technical concepts (G&G post)
  5. Explaining higher math to beginners (G&G post)
  6. Visual Algebra II (G&G post)
  7. Monads for high school II: Lists (G&G post)
  8. The mystery of the prime numbers: a review (G&G post)
  9. Hersh, R. (1997a), "Math lingo vs. plain English: Double entendre". American Mathematical Monthly, volume 104, pages 48–51.
  10. Names (in abmath)
  11. Cognitive dissonance (in abmath)
Send to Kindle

Models of forms explicated, a little bit

Some miscellaneous notes about the concept of form, which I sketched (ahem) in  a series of posts TDMO1TDMO2TDMO3TDMO4,TDMO5TDMO6, TDMO7, TDMO8, and TDMO9. This series builds up to an explanation of the concept of form in the paper Graph-Based Logic and Sketches by Atish Bagchi and me.  I am now embarking on a series of posts with further explanations and comments.

More about a model of a form

For any constructor space \text{C} (which will be the sketch for a kind of category, a special case of a doctrine), take any object F in the FL Cattheory of \text{C}   and adjoin a new arrow f:1\to F where 1 is the terminal object.  f is what we call a C-form and the enhanced category is denoted by \text{C}_f.  In TDMO9 I described the node \text{rfs} for reflexive function spaces in a cartesian closed category; it is an example of a CCC-form.

A model of a \text{C}-form f  “in a C-category \text{K}” means that \text{K} is a model of \text{C}_f . In particular, in  \text{K}, M(F) is nonempty.

The connection with sketches is this:  If you have a sketch in some doctrine \text{C}, the sketch consists of a graph with some diagrams, cones and cocones.  There is a node F in the FL Cattheory of \text{C} each of whose elements in a model of \text{C} (in other words in a \text{C}-category) will be such a sketch.

Example: The FP sketch for magmas

A magma is a set with a binary operation defined on it (Note 1).  It does not have to be associative or commutative or anything.  In the FP doctrine its sketch consists of one diagram

(Diagram1)

and one cone

(Cone1)

and nothing else.  The FP-Cattheory for this sketch is (equivalent to) the Lawvere theory of magmas.

The FL-Cattheory \text{FP} for FP categories, described in some detail in TDMO8, contains a node whose inhabitants in any model of \text{FP} (in other words in any FP-category) are all such sketches (the diagram and the cone).   This means that the FP sketch for magmas corresponds to an FP-form.  In this way you can see that all sketches in Ehresmann’s sense are forms in my sense.

This node can be constructed as the limit F of a cone over a diagram in \text{FP} as was done in previous posts.  You have to make the diagram become a description of the diagram and cone above, using the arrows in the constructor space \text{FP}, for example \text{ob}, \text{ar}, \text{prod}:\text{ob}\times\text{ob}\rightarrow\text{cone} and others, and including formally commutative diagrams that say for example that Cone1’s projections go to the same object (using \text{lproj} and \text{rproj}).   Maybe someday I will produce this diagram in a post but right now I have a cold.  (Excuses, excuses…)

Adjoining a global element to this limit node will result in an FL-sketch \text{FP}_fwhich contains the FL-Cattheory for \text{FP} along with that global element.

So a model of the form for magmas in an FP category \cal{B} is a model of \text{FP}_f for which the model of the underlying cattheory \text{FP} is \cal{B}; in other words it is the category \cal{B} with a distinguished element f of the node F.  That distinguished element is a particular diagram and cone like the ones shown above for a particular object A (because the projections onto F include a particular projection to \text{ob}).  That object A with the arrows corresponding to m, p_1 and p_2 is a particular magma, a model of the sketch for magmas given above.

Notes

Note 1  “Magma” was the term used by Bourbaki for this structure.  As far as I know, very few people ever used the word until it was published in [1].  When I was a grad student in 1962-65 it was called a “groupoid”, which means something else now (something much more important than a magma in my opinion).  Now the name occurs in examples all over Wikipedia.

References

[1] M. Hazewinkel (2001), “Magma“, in Hazewinkel, Michiel, Encyclopaedia of Mathematics, Kluwer Academic Publishers, ISBN 978-1556080104

Send to Kindle