Tag Archives: lakoff

Multivalued Functions

Multivalued functions

I am reconstructing the abstractmath website and am currently working on the part on functions. This has generated some bloggable blustering.

The phrase multivalued function refers to an object that is like a function {f:S\rightarrow T} except that for {s\in S}, {f(s)} may denote more than one value. Multivalued functions arose in considering complex functions such as {\sqrt{z}}. Another example: the indefinite integral is a multivalued operator.

It is useful to think of a multivalued function as a function although it violates one of the requirements of being a function (being single-valued).

A multivalued function {f:S\rightarrow T} can be modeled as a function with domain {S} and codomain the set of all subsets of {T}. The two meanings are equivalent in a strong sense (naturally equivalent). Even so, it seems to me that they represent two different ways of thinking about multivalued functions.: “The value may be any of these things…” as opposed to “The value is this whole set of things.”) The “value may be any of these…” idea has a perfectly good mathematical model: a relation (set of ordered pairs) from {S} to {T} which is the inverse of a surjective function.

Phrases such as “multivalued function” and “partial function” upset some uptight types who say things like, “But a multivalued function is not a function!”. A stepmother is not a mother, either.

I fulminated at length about this in the Handbook article on radial category. (This is conceptual category in the sense of Lakoff, Women, fire and dangerous things, University of Chicago, 1986.). The Handbook is on line, but it downloads very slowly, so I have extracted the particular page on radial categories here.

Functions generate a radial category of concepts in mathematics. There are lots of other concepts in math that have generated radial categories. Think of “incomplete proof” or “left identity”. Radial categories are a basic mechanism of the way we think and function in the world. They should not be banished from mathematics.

Send to Kindle

Typical examples

There is a sense in which a robin is a typical bird and a penguin is not a typical bird. (See Reference 1.) Mathematical objects are like this and not like this.

A mathematical definition is simply a list of properties. If an object has all the properties, it is an example of the definition. If it doesn’t, it is not an example. So in some basic sense no example is any more typical than any other. This is in the sense of rigorous thinking described in the abstractmath chapter on images and metaphors.

In fact mathematicians are often strongly opinionated about examples: Some are typical, some are trivial, some are monstrous, some are surprising. A dihedral group is more nearly a typical finite group than a cyclic group. The real numbers on addition is not typical; it has very special properties. The monster group is the largest finite simple group; hardly typical. Its smallest faithful representation as complex matrices involves matrices that are of size 196,883. The monster group deserves its name. Nevertheless, the monster group is no more or less a group than the trivial group.

People communicating abstract math need to keep these two ideas in mind. In the rigorous sense, any group is just as much a group as any other. But when you think of an example of a group, you need to find one that is likely to provide some information. This depends on the problem. For some problems you might want to think of dihedral groups. For others, large abelian p-groups. The trivial group and the monster group are not usually good examples. This way of thinking is not merely a matter of psychology, but it probably can’t be made rigorous either. It is part of the way a mathematician thinks, and this aspect of doing math needs to be taught explicitly.

Reference 1. Lakoff, G. (1986), Women, Fire, and Dangerous Things. The University of Chicago Press. He calls typical examples “prototypical”.

Send to Kindle