Tag Archives: inert

Thinking about mathematical objects revisited

How we think about X

It is notable that many questions posted at MathOverflow are like, “How should I think about X?”, where X can be any type of mathematical object (quotient group, scheme, fibration, cohomology and so on).  Some crotchety contributors to that group want the questions to be specific and well-defined, but “how do I think about…” questions  are in my opinion among the most interesting questions on the website.  (See note [a]).

Don’t confuse “How do I think about X” with “What is X really?” (pace Reuben Hersh).  The latter is a philosophical question.  As far as I am concerned, thinking about how to think about X is very important and needs lots of research by mathematicians, educators, and philosophers — for practical reasons: how you think about it helps you do it.   What it really is is no help and anyway no answer may exist.

Inert and eternal

The idea that mathematical objects should be thought of as  “inert” and “eternal”  has been around for awhile.  (Never mind whether they really are inert and eternal.)  I believe, and have said in the past [1], that thinking about them that way clears up a lot of confusion in newbies concerning logical inference.

  • That mathematical objects are “inert” means that the do not cause anything. They have no effect on the real world or on each other.
  • That they are “eternal” means they don’t change over time.

Naturally, a function (a mathematical object) can model change over time, and it can model causation, too, in that it can describe a process that starts in one state and achieves stasis in another state (that is just one way of relation functions to causation).  But when we want to prove something about a type of math object, our metaphorical understanding of them has to lose all its life and color and go dead, like the dry bones before Ezekiel started nagging them.

It’s only mathematical reasoning if it is about dead things

The effect on logical inference can be seen in the fact that “and” is a commutative logical operator. 

  • “x > 1 and x < 3″ means exactly the same thing as “x < 3 and x > 1″
  • “He picked up his umbrella and went outside” does not mean the same thing as “He went outside and picked up his umbrella”.

The most profound effect concerns logical implication.  “If  x > 1 then x > 0″ says nothing to suggest that x > 1 causes it to be the case that x > 0.  It is purely a statement about the inert truth sets of two predicates lying around the mathematical boneyard of objects:  The second set includes the first one.  This makes vacuous implication perfectly obvious.  (The number -1 lies in neither truth set and is irrelevant to the fact of inclusion).

Inert and eternal rethought

There are better metaphors than these.  The point about the number 3 is that you think about it as outside time. In the world where you think about 3 or any other mathematical object, all questions about time are meaningless.

  • In the sentence “3 is a prime”, we need a new tense in English like the tenses ancient (very ancient) Greek and Hebrew were supposed to have (perfect with gnomic meaning), where a fact is asserted without reference to time.
  • Since causation involves this happens, then this happens, all questions about causation are meaningless, too.  It is not true that 3 causes 6 to be composite, while being irrelevant to the fact that 35 is composite.

This single metaphor “outside time” thus can replace the two metaphors “inert” and “eternal” and (I think) shows that the latter two are really two aspects of the same thing.

Caveat

Thinking of math objects as outside time is a Good Thing when you are being rigorous, for example doing a proof.  The colorful, changing, full-of-life way of thinking of math that occurs when you say things like the statements below is vitally necessary for inspiring proofs and for understanding how to apply the mathematics.

  • The harmonic series goes to infinity in a very leisurely fashion.
  • A function is a machine — when you dump in a number it grinds away and spits out another number.
  • At zero, this function vanishes.

Acknowledgment

Thanks to Jody Azzouni for the italics (see [3]).

Notes

a.  Another interesting type of question  “in what setting does such and such a question (or proof) make sense?” .  An example is my question in [2].

References

1.  Proofs without dry bones

2. Where does the generic triangle live?

3. The revolution in technical exposition II.

Send to Kindle

Proofs without dry bones

I have discussed images, metaphors and proofs in math in two ways:

(A) A mathematical proof

A monk starts at dawn at the bottom of a mountain and goes up a path to the top, arriving there at dusk. The next morning at dawn he begins to go down the path, arriving at dusk at the place he started from on the previous day. Prove that there is a time of day at which he is at the same place on the path on both days.

Proof: Envision both events occurring on the same day, with a monk starting at the top and another starting at the bottom at the same time and doing the same thing the monk did on different days. They are on the same path, so they must meet each other. The time at which they meet is the time required.

This example comes from Fauconnier, Mappings in Thought and Language, Cambridge Univ. Press, 1997. I discuss it in the Handbook, pages 46 and 153. See the Wikipedia article on conceptual blending.

(B) Rigor and rigor mortis

The following is quoted from a previous post here. See also the discussion in abstractmath.

When we are trying to understand or explain math, we may use various kinds of images and metaphors about the subject matter to construct a colorful and rich representation of the mathematical objects and processes involved. I described some of these briefly here. They can involve thinking of abstract things moving and changing and affecting each other.

When we set out to prove some math statement, we go into what I have called “rigorous mode”. We feel that we have to forget some of the color and excitement of the rich view. We must think of math objects as inert and static. They don’t move or change over time and they don’t interact with other objects or the real world. In other words, pretend that all math objects are dead.

We don’t always go all the way into this rigorous mode, but if we use an image or metaphor in a proof and someone challenges us about it, we may rewrite that part to get rid of the colorful representation and replace it by a calculation or line of reasoning that refers to the math objects as if they were inert and static – dead.

I didn’t contradict myself.
I want to clear up some tension between these two ideas.

The argument in (A) is a genuine mathematical proof, just as it is written. It contains hidden assumptions (enthymemes), but all math proofs contain hidden assumptions. My remarks in (B) do not mean that a proof is not a proof until everything goes dead, but that when challenged you have to abandon some of the colorful and kinetic reasoning to make sure you have it right. (This is a standard mathematical technique (note 1).)

One of the hidden assumptions in (A) is that two monks walking the opposite way on the path over the same interval of time will meet each other. This is based on our physical experience. If someone questions this we have several ways to get more rigorous. One many mathematicians might think of is to model the path as a curve in space and consider two different parametrizations by the unit interval that go in opposite directions. This model can then appeal to the intermediate value theorem to assert that there is a point where the two parametrizations give the same value.

I suppose that argument goes all the way to the dead. In the original argument the monk is moving. But the parametrized curve just sits there. The parametrizations are sets of ordered pairs in R x (R x R x R). Nothing is moving. All is dry bones. Ezekiel has not done his thing yet.

This technique works, I think, because it allows classical logic to be correct. It is not correct in everyday life when things are moving and changing and time is passing.

Avoid models; axiomatize directly
But it certainly is not necessary to rigorize this argument by using parametrizations involving the real numbers. You could instead look at the situation of the monk and make some axioms the events being described. For example, you could presumably make axioms on locations on the path that treat the locations as intervals rather than as points.

The idea is to make axioms that state properties that intervals have but doesn’t say they are intervals. For example that there is a relation “higher than” between locations that must be reflexive and transitive but not antisymmetric. I have not done this, but I would propose that you could do this without recreating the classical real numbers by the axioms. (You would presumably be creating the intuitionistic real numbers.)

Of course, we commonly fall into using the real numbers because methods of modeling using real numbers have been worked out in great detail. Why start from scratch?

About the heading on this section: There is a sense in which “axiomatizing directly” is a way of creating a model. Nevertheless there is a distinction between these two approaches, but I am to confused to say anything about this right now.

First order logic.
It is commonly held that if you rigorize a proof enough you could get it all the way down to a proof in first order logic. You could do this in the case of the proof in (A) but there is a genuine problem in doing this that people don’t pay enough attention to.

The point is you replace the path and the monks by mathematical models (a curve in space) and their actions by parametrizations. The resulting argument calls on well known theorems in real analysis and I have no doubt can be turned into a strict first order logic argument. But the resulting argument is no longer about the monk on the path.

The argument in (A) involves our understanding of a possibly real physical situation along with a metaphorical transference in time of the two walks (a transference that takes place in our brain using techniques (conceptual blending) the brain uses every minute of every day). Changing over to using a mathematical model might get something wrong. Even if the argument using parametrized curves doesn’t have any important flaws (and I don’t believe it does) it is still transferring the argument from one situation to another.

Conclusion:
Mathematical arguments are still mathematical arguments whether they refer to mathematical objects or not. A mathematical argument can be challenged and tested by uncovering hidden assumptions and making them explicit as well as by transferring the argument to a classical mathematical situation.

Note 1. Did you ever hear anyone talking about rigor requiring making images and metaphors dead? This is indeed a standard mathematical technique but it is almost always suppressed, or more likely unnoticed. But I am not claiming to be the first one to reveal it to the world. Some of the members of Bourbaki talked this way. (I have lost the reference to this.)

They certainly killed more metaphors than most mathematicians.

Note 2. This discussion about rigor and dead things is itself a metaphor, so it involves a metametaphor. Metaphors always have something misleading about them. Metametaphorical statements have the potential of being far worse. For example, the notion that mathematics contains some kind of absolute truth is the result of bad metametaphorical thinking.

Send to Kindle