Tag Archives: implication

The many boobytraps of “if…then”

CONTENTS

The truth table for conditionals

Conditionals and truth sets

Vacuous truth

Universal conditional assertions

Related assertions

Understanding conditionals

Modus ponens

CONDITIONAL ASSERTIONS

This section is concerned with logical construc­tions made with the connective called the conditional operator. In mathe­matical English, applying the conditional operator to $P$ and $Q$ produces a sentence that may bewritten, “If $P$, then $Q$”, or “$P$ implies$Q$”. Sentences of this form are conditional assertions.

Conditional assertions are at the very heart of mathematical reasoning. Mathematical proofs typically consist of chains of conditional assertions.

Some of the narrative formats used for proving conditional assertions are discussed in Forms of Proof.

The truth table for conditional assertions

A conditional assertion “If $P$ then $Q$” has the precise truth table shown here.

 

$P$ $Q$ If $P$ then $Q$
T T T
T F F
F T T
F F T

The meaning of “If $P$ then $Q$” is determined entirely by the truth values of $P$ and $Q$ and this truth table. The meaning is not determined by the usual English meanings of the words “if” and “then”.

The truth table is summed up by this purple pronouncement:

The Prime Directive of conditional assertions:
A conditional assertion is true unless
the hypothesis is true and the conclusion is false.
That means that to prove “If $P$ then $Q$” is  FALSE
you must show that $P$ is TRUE(!) and $Q$ is FALSE.

The Prime Directive is harder to believe in than leprechauns. Some who are new to abstract math get into an enormous amount of difficulty because they don’t take it seriously.

Example

The statement “if $n\gt 5$, then $n\gt 3$” is true for all integers
$n$.

  • This means that “If $7\gt 5$ then $7\gt 3$” is true.
  • It also means that “If $2\gt 5$ then $2\gt 3$” is true!  If you really believe that “If $n\gt 5$, then $n\gt 3$” is true for all integers n, then you must in particular believe that  “If $2\gt 5$ then $2\gt 3$” is true.  That’s why the truth table for conditional assertions takes the form it does.
  • On the other hand, “If $n\gt 5$, then $n\gt 8$” is not true for all integers $n$.  In particular, “If $7\gt 5$, then $7\gt 8$” is false. This fits what the truth table says, too.

For more about this, see Understanding conditionals.

Remark

Most of the time in mathematical writing the conditional assertions which are actually stated involve assertions containing variables, and the claim is typically that the assertion is true for all instances of the variables. Assertions involving statements without variables occur only implicitly in the process of checking instances of the assertions. That is why a statement such as, “If $2\gt 5$ then $2\gt 3$” seems awkward and unfamiliar.

It is unfamiliar and occurs rarely. I mention it here because of the occurrence of vacuous truths, which do occur in mathematical writing.

Conditionals and Truth Sets

The set $\{x|P(x)\}$ is the set of exactly all $x$ for which $P(x)$ is true. It is called the truth set of $P(x)$.

Examples
  • If $n$ is an integer variable, then the truth set of “$3\lt n\lt9$” is the set $\{4,5,6,7,8\}$.
  • The truth set of “$n\gt n+1$” is the empty set.

Weak and strong

“If $P(x)$ then $Q(x)$” means that $\{x|P(x)\}\subseteq
\{x|Q(x)\}$.  We say $P(x)$ is stronger than $Q(x)$, meaning that $P$ puts more requirements on $x$ than $Q$ does.  The objects $x$ that make $P$ true necessarily make $Q$ true, so there might be objects making $Q$ true that don’t make $P$ true.

Example

The statement “$x\gt4$” is stronger than the statement “$x\gt\pi$”. That means that $\{x|x\gt4\}$ is a proper subset of $\{x|x\gt\pi\}$. In other words, $\{x|x\gt4\}$ is “smaller” than $\{x|x\gt\pi\}$ in the sense of subsets. For example, $3.5\in\{x|x\gt\pi\}$ but $3.5\notin\{x|x\gt4\}$. This is a kind of reversal (a Galois correspondence) that confused many of my students.

“Smaller” means the truth set of the stronger statement omits elements that are in the truth set of the weaker statement. In the case of finite truth sets, “smaller” also means it has fewer elements, but that does not necessarily work for infinite sets, such as in the example above, because the two truth sets $\{x|x\gt4\}$ and $\{x|x\gt\pi\}$ have the same cardinality.

Making a statement stronger
makes its truth set “smaller”.

Terminology and usage

Hypothesis and conclusion

In the assertion “If $P$, then $Q$”:

  • P is the hypothesis or antecedent
    of the assertion.  It is a constraint or condition that holds in the very narrow context of the assertion.  In other words, the assertion, “If $P$, then $Q$” does not say that $P$ is true. The idea of the direct method of proof is to assume that $P$ is true during the proof.
  • $Q$ is the conclusion or consequent. It is also incorrect to assume that $Q$ is true anywhere else except in the assertion “If $P$, then $Q$”.

“Implication”

Conditionals such as “If $P$ then $Q$” are also called implications , but be wary: “implication” is a technical term and does not fit the meaning of the word in conversational English.

  • In ordinary English, you might ask, “What are the implications of knowing that $x\gt4$? Answer: “Well, for one thing, $x$ is bigger that $\pi$.”
  • In the terminology of math and logic, the whole statement “If $x\gt4$ then $x\gt\pi$” is called an “implication”.

Vacuous truth

The last two lines of the truth table for conditional assertions mean that if the hypothesis of the assertion is false, then the assertion is automatically true.
In the case that “If $P$ then $Q$” is true because $P$ is false, the assertion is said to be vacuously true.

The word “vacuous” refers to the fact that in the vacuous case the conditional assertion says nothing interesting about either $P$ or $Q$. In particular, the conditional assertion may be true even if the conclusion is false (because of the last line of the truth table).

Example

Both these statements are vacuously true!

  • If $4$ is odd, then $3 = 3$.
  • If $4$ is odd, then $3\neq3$.
Example

If $A$ is any set then $\emptyset\subseteq A.$ Proof (rewrite by definition): You have to prove that if $x\in\emptyset$, then $x\in A$. But the statement “$x\in\emptyset$” is false no matter what $x$ is, so the statement “$\emptyset\subseteq A$” is vacuously true.

Definitions involving vacuous truth

Vacuous truth can cause surprises in connection with certain concepts which are defined using a conditional assertion.

Example
  • Suppose $R$ is a relation on a set $S$. Then $R$ is antisymmetric if the following statement is true: If for all $x,y\in S$, $xRy$ and $yRx$, then $x=y$.
  • For example, the relation “$\leq$” on the real numbers is antisymmetric, because if $x\leq y$ and $y\leq x$, then $x=y$.
  • The relation “$\lt$” on the real numbers is also antisymmetric. It is vacuously antisymmetric, because the statement

    (AS) “if $x\gt y$ and $y\gt x$, then $x = y$”

    is vacuously true. If you say it can’t happen that $x\gt y$ and $y\gt x$, you are correct, and that means precisely that (AS) is vacuously true.

Remark

Although vacuous truth may be disturbing when you first see it, making either statement in the example false would result in even more peculiar situations. For example, if you decided that “If $P$ then $Q$” must be false when $P$ and $Q$ are both false, you would then have to say that this statement

“For any integers $m$ and $n$, if $m\gt 5$ and $5\gt n$, then $m\gt n$”
 

 

is not always true (substitute $3$ for $m$ and $4$ for $n$ and you get both $P$ and $Q$ false). This would surely be an unsatisfactory state of affairs.

How conditional assertions are worded

A conditional assertion may be worded in various ways.  It takes some practice to get used to understanding all of them as conditional.

Our habit of swiping English words and phrases and changing their meaning in an unintuitive way causes many problems for new students, but I am sure that the worst problem of that kind is caused by the way conditional assertions are worded.

In math English

The most common ways of wording a conditional assertion with hypothesis $P$ and conclusion $Q$ are:

  • If $P$, then $Q$.
  • $P$ implies $Q$.
  • $P$ only if $Q$.
  • $P$ is sufficient for $Q$.
  • $Q$ is necessary for $P$.

In the symbolic language

  • $P(x)\to Q(x)$
  • $P(x)\Rightarrow Q(x)$
  • $P(x)\supset Q(x)$

Math logic is notorious for the many different symbols used by different authors with the same meaning. This is in part because it developed separately in three different academic areas: Math, Philosophy and Computing Science.

Example

All the statements below mean the same thing. In these statements $n$ is an integer variable.

  • If $n\lt5$, then $n\lt10$.
  • $n\lt5$ implies $n\lt10$.
  • $n\lt5$ only if $n\lt10$.
  • $n\lt5$ is sufficient for $n\lt10$.
  • $n\lt10$ is necessary for $n\lt5$.
  • $n\lt5\to n\lt10$
  • $n\lt5\Rightarrow n\lt10$
  • $n\lt5\supset n\lt10$

Since “$P(x)\supset Q(x)$” means that $\{x|P(x)\}\subseteq
\{x|Q(x)\}$, there is a notational clash between implication written “$\supset $” and inclusion written “$\subseteq $”. This is exacerbated by the two meanings of the inclusion symbol “$\subset$”.

These ways of wording conditionals cause problems for students, some of them severe. They are discussed in the section Understanding conditionals.

Usage of symbols

The logical symbols “$\to$”, “$\Rightarrow$”,
“$\supset$” are frequently used when writing on the blackboard, but are not common in texts, except for texts in mathematical logic.

More about implication in logic

If you know some logic, you may know that there is a subtle difference between the statements

  • “If $P$ then $Q$”
  • “$P$ implies $Q$”.

Here is a concrete example:

  1. “If $x\gt2$,  then $x$ is positive.”
  2. “$x\gt2$ implies that $x$ is positive.”

Note that the subject of sentence (1) is the (variable) number $x$, but the subject of sentence (2) is the assertion
“$x\lt2$”.   Behind this is a distinction made in formal logic between the material conditional “if $P$ then $Q$” (which means that $P$ and $Q$ obey the truth table for “If..then”) and logical consequence ($Q$ can be proved given $P$). I will ignore the distinction here, as most mathematicians do except when they are proving things about logic.

In some texts, $P\Rightarrow Q$ denotes the material conditional and $P\to Q$ denotes logical consequence.

Universal conditional assertions

A conditional assertion containing a variable that is true for any value of the correct type of that variable is a universally true conditional assertion. It is a special case of the general notion of universally true assertion.

Examples
  1. For all $x$, if $x\lt5$, then $x\lt10$.
  2. For any integer $n$, if $n^2$ is even, then $n$ is even.
  3. For any real number $x$, if $x$ is an integer, then $x^2$ is an integer.

These are all assertions of the form “If $P(x)$, then $Q(x)$”. In (1), the hypothesis is the assertion “$x\lt5$”; in (2), it is the assertion “$n^2$ is even”, using an adjective to describe property that $n^2$ is even; in (3), it is the assertion “$x$ is an integer”, using a noun to assert that $x$ has the property of being an integer. (See integral.)

Expressing universally true conditionals in math English

The sentences listed in the example above provide ways of expressing universally true conditionals in English. They use “for all” or “for any”, You may also use these forms (compare in this discussion of universal assertions in general.)

  • For all functions $f$, if $f$ is differentiable then it is continuous.
  • For (every, any, each) function $f$, if $f$ is differentiable then it is continuous.
  • If $f$ is differentiable then it is continuous, for any function $f$.
  • If $f$ is differentiable then it is continuous, where $f$ is any function.
  • If a function $f$ is differentiable, then it is continuous. (See indefinite article.)

Sometimes mathematicians write, “If the function $f$ is differentiable, then it is continuous.” At least sometimes, they mean that every function that is differentiable is continuous. I suspect that this usage occurs in texts written by non-native-English speakers.

Disguised conditionals

There are other ways of expressing universal conditionals that are disguised, because they are not conditional assertions in English.

Let $C(f)$ mean that $f$ is continuous and and $D(f)$ mean that $f$ is differentiable. The (true) assertion

“For all $f$, if $D(f)$, then $C(f)$”
 

 

can be said in the following ways:

  1. Every (any, each) differentiable function is continuous.
  2. All differentiable functions are continuous.
  3. Differentiable functions are continuous. Or: “…are always continuous.”
  4. A differentiable function is continuous.
  5. The differentiable functions are continuous.

Notes

  • Watch out for (4). Beginning abstract math students sometimes don’t recognize it as universal. They may read it as “Some differentiable function is continuous.” Authors often write, “A differentiable function is necessarily continuous.”
  • I believe that (5) is obsolescent. I don’t think younger native-English-speaking Americans would use it. (Warning: This claim is not based on lexicographical research.)

Assertions related to a conditional assertion

Converse

The converse of a conditional assertion “If $P$ then $Q$” is “If $Q$ then $P$”.

Whether a conditional assertion is true
has no bearing on whether its converse it true.

Examples
  • The converse of “If it’s a cow, it eats grass” is “If it eats grass, it’s a cow”. The first statement is true (let’s ignore the Japanese steers that drink beer or whatever), but the second statement is definitely false. Sheep eat grass, and they are not cows..
  • The converse of “For all real numbers $x$, if $x > 3$, then $x > 2$.” is “For all real numbers $x$, if $x > 2$, then $x > 3$.” The first is true and the second one is false.
  • “For all integers $n$, if $n$ is even, then $n^2$ is even.” Both this statement and its converse are true.
  • “For all integers $n$, if $n$ is divisible by $2$, then $2n +1$ is divisible by $3$.” Both this statement and its converse are false.

Contrapositive

The contrapositive of a conditional assertion “If $P$ then $Q$” is “If not $Q$ then not $P$.”

A conditional assertion and its contrapositive
are both true or both false.

Example

The contrapositive of
“If $x > 3$, then $x > 2$”
is (after a little translation)
“If $x\leq2$ then $x\leq3$.”
For any number $x$, these two statements are both true or both false.

This means that if you prove “If not $P$ then not $Q$”, then you have also proved “If $P$ then $Q$.”

You can prove an assertion by proving its contrapositive.

This is called the contrapositive method and is discussed in detail in this section.

So a conditional assertion and its contrapositive have the same truth value. Two assertions that have the same truth value are said to be equivalent. Equivalence is discussed with examples in the Wikipedia article on necessary and sufficient.

Understanding conditional assertions

As you can see from the preceding discussions, statements of the form “If $P$ then Q” don’t mean the same thing in math that they do in ordinary English. This causes semantic contamination.

Examples

Time

In ordinary English, “If $P$ then $Q$” can suggest order of occurrence. For example, “If we go outside, then the neighbors will see us” implies that the neighbors will see us after we go outside.

Consider “If $n\gt7$, then $n\gt5$.” If $n\gt7$, that doesn’t mean $n$ suddenly gets greater than $7$ earlier than $n$ gets greater than $5$. On the other hand, “$n\gt5$ is necessary for $n\gt7$” (which remember means the same thing as “If $n\gt7$, then $n\gt5$) doesn’t mean that $n\gt5$ happens earlier than $n\gt7$. Since we are used to “if…then” having a timing implication, I suspect we get subconscious dissonance between “If $P$ then $Q$” and “$Q$ is necessary for $P$” in mathematical statements, and this dissonance makes it difficult to believe that that can mean the same thing.

Causation

“If $P$ then $Q$” can also suggest causation. The the sentence, “If we go outside, the neighbors will see us” has the connotation that the neighbors will see us because we went outside.

The contrapositive is “If the neighbors won’t see us, then we don’t go outside.” This English sentence seems to me to mean that if the neighbors are not around to see us, then that causes us to stay inside. In contrast to contrapositive in math, this means something quite different from the original sentence.

Wrong truth table

For some instances of the use of “if…then” in English, the truth table is different.

Consider: “If you eat your vegetables, you can have dessert.” Every child knows that this means they will get dessert if they eat their vegetables and not otherwise. So the truth table is:






$P$ $Q$ If $P$ then $Q$
T T T
T F F
F T F
F F T

In other words, $P$ is equivalent to $Q$. It appears to me that this truth table corresponds to English “if…then” when a rule is being asserted.

These examples show:

The different ways of expressing conditional assertions
may mean different things in English.

How can you get to the stage where you automatically understand the meaning of conditional assertions in math English?

You need to understand the equivalence of these formulations so well that it is part of your unconscious reaction to conditionals.

How can you gain that intuitive understanding? One way is by doing abstract math regularly for several years! (Of course, this is how you gain expertise in anything.) In other words, Practice, Practice!

Rigor

But it may help to remember that when doing proofs, we must take the rigorous view of mathematical objects:

  • Math objects don’t change.
  • Math objects don’t cause anything to happen.

The integers (like all math objects) just sit there, not doing anything and not affecting anything. $10$ is not greater than $4$ “because” it is greater than $7$. There is no “because” in rigorous math. Both facts, $10\gt4$ and $10\gt7$, are eternally true.

Eternal is how we think of them – I am not making a claim about “reality”.

  • When you look at the integers, every time you find one that is greater than $7$ it turns out to be greater than $4$. That is how to think about “If $n > 7$, then $n > 4$”.
  • You can’t find one that is greater than $7$ unless it is greater than $4$: It happens that $n > 7$ only if $n > 4$.
  • Every time you look at one less than or equal to $4$ it turns out to be less than or equal to $7$ (contrapositive).

These three observations describe the same set of facts about a bunch of things (integers) that just sit there in their various relationships without changing, moving or doing anything. If you keep these remarks in mind, you will eventually have a natural, unforced understanding of conditionals in math.

Remark

None of this means you have to think of mathematical objects as dead and fossilized all the time. Feel free to think of them using all the metaphors and imagery you know, except when you are reading or formulating a proof written in mathematical English. Then you have to be rigorous!

Modus ponens

The truth table for conditional assertions may be summed up by saying: The conditional assertion “If $P$, then $Q$” is true unless $P$ is true and $Q$ is false.

This fits with the major use of conditional assertions in reasoning:

Modus Ponens

  • If you know that a conditional assertion is true
  • and
    you know that its hypothesis is true,
  • then you know its conclusion is true.

In symbols:

(1) When “If $P$ then $Q$” and $P$ are both true,

(2) then $Q$ must be true as well.

Modus Ponens is the most used method of deduction of all.

Remark

Modus ponens is not a method of proving conditional assertions. It is a method of using a conditional assertion in the proof of another assertion. Methods for proving conditional assertions are found in the chapter Forms of proof.

Creative Commons License<![endif]>

This work is licensed under a Creative Commons Attribution-ShareAlike 2.5 License.

 


Send to Kindle

Bugs in English and in math

Everyone knows that computer programs have bugs.  In fact, languages have bugs, too, although we don't usually call them that.  

Bugs in English 

  

Right

Q: "Should I turn left at the next corner?" A: "Right".  Probably most Americans who drive now know this bug.  The answer could mean "yes" or "turn right".  So we have to stop and think how to answer this question.  That makes it a bug.  

Too, two

Comment: " We will take Route 30".  Answer: "We will take Route 30 too".  This bug is probably responsible for the survival of the word "also".  

Note that unlike the case of "right", this is a bug only of spoken English.

Subject and predicate

In Comma rule found dysfunctional, I wrote about the problem that in formal English writing there is no way to indicate where the subject ends and the predicate begins.  This causes a problem reading complicated sentences with many clauses such as academic writing often uses.  Of course, one way around this is to write short, simple sentences!  (That sounds like the subject of a future blog…) 

Bugs in the symbolic language of math

  

Fractions

In both Excel and Mathematica, "1/2*3" means 3/2. Now, I would think "1/2a" means "1/(2a)", but younger mathematicians are taught PEMDAS (see Purplemath), which says that division and multiplication have the same precedence and operations are evaluated from left to right.  

 If in Mathematica you define a function f[a_] := 1/2a, f[3] evaluates to 3/2, so Mathematica (and most other computer languages) agree with PEMDAS. (Note: When you write 1/2a in a Mathematica notebook, it automatically puts a space between the 2 and the a, and space in Mathematica means times, so it does warn you.)

Nevertheless, my ancient education would lead me to write (1/2)a for that meaning.  This means I must learn to write 1/(2a) for the other meaning instead of 1/2a.  

Questions:

  • Did the language really change or was I always "doing it wrong"?  I would like to hear from other ancient mathematicians.  (But I don't know very many who would read blogs or Purplemath.)
  • Should such a phenomenon be called a bug? 

Repeated exponentiation

In Excel, "2^2^3" means $(2^2)^3$, in other words, 64.  In Mathematica, it means $2^{(2^3)}=2^8=256$.  My impression is that most mathematicians expect it to mean $2^{(2^3)}$.  

References: This post in Walking Randomly, my post Mathematical UsageWikipedia's article.  

Exponentiation on functions is ambiguous

If $f:\mathbb{R}\to\mathbb{R}$ is a function, $f^2(x)$ can mean either $f(f(x))$ or $f(x)f(x)$, and both usages are common.  You should tell your students about this because no one is ever going to make one of the usages go away.

A far worse catastrophe is the fact that in calculus books, $\sin^2x=(\sin\,x)(\sin\,x)$ but $\sin^{-1}x=\text{arcsin}\,x$.  I betcha (lived in Minnesota four years now) we could succeed with a campaign to convince calc book publishers to always write $(\sin\,x)^2$ and $\arcsin\,x$.  

Bugs in the Mathematical Dialect of English

The mathematical dialect of English is what I call Mathematical English in the abstractmath website.  It is a different language from the symbolic language, which is not a dialect of English.

I have written about the problems with Mathematical English in a ridiculous number of places.  (See references in The Handbook of Mathematical Discourse).  It is normal for a dialect of a language to use words and grammatical structures that in the original language mean different things.  (See Dialects below).

Words with different meanings

  • A set is a group in standard English, but not in math English.  
  • The number 2+3i is a real number in standard English, but not in math English.  
  • And so on.

Use of adjectives and prefixes

  • A "noncommutative ring" has commutative addition.
  • A "semigroup" has a fully defined binary operation.

If, then

The bug that grabs math newbies by the throat and won't let go is the meaning of "If P, then Q".  

  • "If a number is divisible by 4, then it is even" in math dialect means a number not divisible by 4 might be even anyway.
  • "If you eat your broccoli you will get your dessert" in standard American Parental English does not mean you might get your dessert if you don't eat your broccoli.

And then there is the phenomenon of Vacuous Implication, which leaves students gasping and writhing.

About "dialects"

Most Americans are not familiar with dialects in the sense I am using the word here, since the only really different dialects we have are Gullah and Hawaiian Pidgin, both of which are very hard to understand; although for example Appalachian English and African-American urban vernacular [1] are dialects of a milder sort.  I grew up in Savannah and heard diluted Gullah sometimes on the street (didn't understand much).  I am also rather familiar with Züritüütsch since we lived in Zürich for a year.   

What the rest of the world call dialects have many distinctive properties:

  • They have nonstandard pronunciation to the point where they are difficult to understand. 
  • They have differences in grammar.  (Both Gullah and especially Hawaiian Creole have differences in grammar from Standard English.) 
  • They have differences in vocabulary, enough sometimes to cause misunderstanding.

I grew up speaking an Atlanta dialect, which really did have differences in all those parameters.  But what people today call a Southern accent is really just an accent (minor variations in pronunciation), not a dialect.  

Hawaiian Creole, and possibly Gullah, but not the other dialects I mentioned, are singled out by linguists as creoles because they been modified heavy influence from another language.  Züritüütsch is not a creole, but it is quite difficult for native German-speakers to understand.  The Swiss situation particularly emphasizes the distinction between "dialect" and "accent".  The typical native of Zürich speaks Züritüütsch and also speaks standard German with a Swiss accent.  

Reference

[1] What Language Is (And What It Isn't and What It Could Be) by John H. McWhorter. Gotham, 2011.

 

 

Send to Kindle

Unless

Mark Meckes recently wrote (private communication):

I’m teaching a fairly new transition course at Case this term, which involves explicitly teaching students the basics of mathematical English along with the obvious things like logic and proof techniques.  I had a student recently ask about how to interpret “A unless B”.  After a fairly lively discussion in class today, we couldn’t agree on the truth table for this statement, and concluded in the end that “unless” is best avoided in mathematical writing.  I checked the Handbook of Mathematical Discourse to see if you had anything to say about it there, but there isn’t an entry for it.  So, are you aware of a standard interpretation of “unless” in mathematical English?

I did not consider  “unless” while writing HMD.   What should be done to approach a subject like this is to

  • think up examples  (preferably in a bull session with other mathematicians) and try to understand what they mean logically, then
  • do an extensive research of the mathematical literature to see if you can find examples that do and do not correspond  with your tentative understanding.  (Usually you find other uses besides the one you thought of, and sometimes you will discover that what you came up with is completely wrong.)  

What follows is an example of this process.

I can think of three possible meanings for “P unless Q”:

1.  “P if and only if not Q”,
2.  “not Q implies P”
3.  “not P implies Q”.

An example that satisfies (1) is “x^2-x is positive unless 0 \leq x \leq 1“.  I have said that specific thing to my classes — calculus students tend not to remember that the parabola is below the line y=x on that interval. (And that’s the way you should show them — draw a picture, don’t merely lecture.  Indeed, make them draw a picture.)

An example of (2) that is not an example of (1) is “x^2-x is positive unless x = 1/2“.  I don’t think anyone would say that, but they might say “x^2-x is positive unless, for example, x = 1/2“.  I would say that is a correct statement in mathematical English.  I guess the phrase “for example” translates into telling you that this is a statement of form “Q implies not P”, where Q is now “x = 1/2”.   Using the contrapositive, that is equivalent to “P implies not Q”, but that is neither (2) nor (3).

An example of (3) that is not an example of (1) is “x^2-x is positive unless -1 < x < 1“.  I think that any who said that (among math people) would be told that they are wrong, because for example (\frac{-1}{2})^2-\frac{-1}{2} = \frac{3}{4}.  That reaction amounts to saying that (3) is not a correct interpretation of “P unless Q”.

Because of examples like these, my conjecture is that “P unless Q” means “P if and only if not Q”.  But to settle this point requires searching for “unless” in the math literature and seeing if you can find instances where “P unless Q” is not equivalent to “P if and only if not Q”.  (You could also see what happens with searching for “unless” and “example” close together.)

Having a discussion such as the above where you think up examples can give you a clue, but you really need to search the literature.  What I did with the Handbook is to search JStor, available online at Case.  I have to say I had definite opinions about several usages that were overturned during the literature search. (What “brackets” means is an example.)

My proxy server at Case isn’t working right now but when I get it repaired I will look into this question.

Send to Kindle

Thinking about mathematical objects revisited

How we think about X

It is notable that many questions posted at MathOverflow are like, “How should I think about X?”, where X can be any type of mathematical object (quotient group, scheme, fibration, cohomology and so on).  Some crotchety contributors to that group want the questions to be specific and well-defined, but “how do I think about…” questions  are in my opinion among the most interesting questions on the website.  (See note [a]).

Don’t confuse “How do I think about X” with “What is X really?” (pace Reuben Hersh).  The latter is a philosophical question.  As far as I am concerned, thinking about how to think about X is very important and needs lots of research by mathematicians, educators, and philosophers — for practical reasons: how you think about it helps you do it.   What it really is is no help and anyway no answer may exist.

Inert and eternal

The idea that mathematical objects should be thought of as  “inert” and “eternal”  has been around for awhile.  (Never mind whether they really are inert and eternal.)  I believe, and have said in the past [1], that thinking about them that way clears up a lot of confusion in newbies concerning logical inference.

  • That mathematical objects are “inert” means that the do not cause anything. They have no effect on the real world or on each other.
  • That they are “eternal” means they don’t change over time.

Naturally, a function (a mathematical object) can model change over time, and it can model causation, too, in that it can describe a process that starts in one state and achieves stasis in another state (that is just one way of relation functions to causation).  But when we want to prove something about a type of math object, our metaphorical understanding of them has to lose all its life and color and go dead, like the dry bones before Ezekiel started nagging them.

It’s only mathematical reasoning if it is about dead things

The effect on logical inference can be seen in the fact that “and” is a commutative logical operator. 

  • “x > 1 and x < 3″ means exactly the same thing as “x < 3 and x > 1″
  • “He picked up his umbrella and went outside” does not mean the same thing as “He went outside and picked up his umbrella”.

The most profound effect concerns logical implication.  “If  x > 1 then x > 0″ says nothing to suggest that x > 1 causes it to be the case that x > 0.  It is purely a statement about the inert truth sets of two predicates lying around the mathematical boneyard of objects:  The second set includes the first one.  This makes vacuous implication perfectly obvious.  (The number -1 lies in neither truth set and is irrelevant to the fact of inclusion).

Inert and eternal rethought

There are better metaphors than these.  The point about the number 3 is that you think about it as outside time. In the world where you think about 3 or any other mathematical object, all questions about time are meaningless.

  • In the sentence “3 is a prime”, we need a new tense in English like the tenses ancient (very ancient) Greek and Hebrew were supposed to have (perfect with gnomic meaning), where a fact is asserted without reference to time.
  • Since causation involves this happens, then this happens, all questions about causation are meaningless, too.  It is not true that 3 causes 6 to be composite, while being irrelevant to the fact that 35 is composite.

This single metaphor “outside time” thus can replace the two metaphors “inert” and “eternal” and (I think) shows that the latter two are really two aspects of the same thing.

Caveat

Thinking of math objects as outside time is a Good Thing when you are being rigorous, for example doing a proof.  The colorful, changing, full-of-life way of thinking of math that occurs when you say things like the statements below is vitally necessary for inspiring proofs and for understanding how to apply the mathematics.

  • The harmonic series goes to infinity in a very leisurely fashion.
  • A function is a machine — when you dump in a number it grinds away and spits out another number.
  • At zero, this function vanishes.

Acknowledgment

Thanks to Jody Azzouni for the italics (see [3]).

Notes

a.  Another interesting type of question  “in what setting does such and such a question (or proof) make sense?” .  An example is my question in [2].

References

1.  Proofs without dry bones

2. Where does the generic triangle live?

3. The revolution in technical exposition II.

Send to Kindle