Tag Archives: Greek

More alphabets

This post is the third and last in a series of posts containing revisions of the abstractmath.org article Alphabets. The first two were:

Addition to the listings for the Greek alphabet

Sigma: $\Sigma,\,\sigma$ or ς: sĭg'mɘ. The upper case $\Sigma $ is used for indexed sums.  The lower case $\sigma$ (don't call it "oh") is used for the standard deviation and also for the sum-of-divisors function. The ς form for the lower case has not as far as I know been used in math writing, but I understood that someone is writing a paper that will use it.

Hebrew alphabet

Aleph, א is the only Hebrew letter that is widely used in math. It is the cardinality of the set of integers. A set with cardinality א is countably infinite. More generally, א is the first of the aleph numbers $א_1$, $א_2$, $א_3$, and so on.

Cardinality theorists also write about the beth (ב) numbers, and the gimel (ג) function. I am not aware of other uses of the Hebrew alphabet.

If you are thinking of using other Hebrew letters, watch out: If you type two Hebrew letters in a row in HTML they show up on the screen in reverse order. (I didn't know HTML was so clever.)

Cyrillic alphabet

The Cyrillic alphabet is used to write Russian and many other languages in that area of the world. Wikipedia says that the letter Ш, pronounced "sha", is the only Cyrillic letter used in math. I have not investigated further.

The letter is used in several different fields, to denote the Tate-Shafarevich group, the Dirac comb and the shuffle product.

It seems to me that there are a whole world of possibillities for brash young mathematicians to name mathematical objects with other Cyrillic letters. Examples:

  • Ж. Use it for a ornate construction, like the Hopf fibration or a wreath product.
  • Щ. This would be mean because it is hard to pronounce.
  • Ъ. Guaranteed to drive people crazy, since it is silent. (It does have a name, though: "Yehr".)
  • Э. Its pronunciation indicates you are unimpressed (think Fonz).
  • ю. Pronounced "you". "ю may provide a counterexample". "I do?"

Type styles

Boldface and italics

A typeface is a particular design of letters.  The typeface you are reading is Arial.  This is Times New Roman. This is Goudy. (Goudy may not render correctly on your screen if you don't have it installed.)

Typefaces typically come in several styles, such as bold (or boldface) and italic.

Examples



Arial Normal Arial italic Arial bold
Times Normal Times italic Times bold Goudy Normal Goudy italic Goudy bold

Boldface and italics are used with special meanings (conventions) in mathematics. Not every author follows these conventions.

Styles (bold, italic, etc.) of a particular typeface are supposedly called fonts.  In fact, these days “font” almost always means the same thing as “typeface”, so I  use “style” instead of “font”.

Vectors

A letter denoting a vector is put in boldface by many authors.

Examples
  • “Suppose $\mathbf{v}$ be an vector in 3-space.”  Its coordinates typically would be denoted by $v_1$, $v_2$ and $v_3$.
  • You could also define it this way:  “Let $\mathbf{v}=({{v}_{1}},{{v}_{2}},{{v}_{3}})$ be a vector in 3-space.”  (See parenthetic assertion.)

It is hard to do boldface on a chalkboard, so lecturers may use $\vec{v}$ instead of $\mathbf{v}$. This is also seen in print.

Definitions

The definiendum (word or phrase being defined) may be put in boldface or italics. Sometimes the boldface or italics is the only clue you have that the term is being defined. See Definitions.

Example

 

“A group is Abelian if its multiplication is commutative,” or  “A group is Abelian if its multiplication is commutative.”

Emphasis

Italics are used for emphasis, just as in general English prose. Rarely (in my experience) boldface may be used for emphasis.

In the symbolic language

It is standard practice in printed math to put single-letter variables in italics.   Multiletter identifiers are usually upright.

Example

Example: "$f(x)=a{{x}^{2}}+\sin x$".  Note that mathematicians would typically refer to $a$ as a “constant” or “parameter”, but in the sense we use the word “variable” here, it is a variable, and so is $f$.

Example

On the other hand, “e” is the proper name of a specific number, and so is “i”. Neither is a variable. Nevertheless in print they are usually given in italics, as in ${{e}^{ix}}=\cos x+i\sin x$.  Some authors would write this as ${{\text{e}}^{\text{i}x}}=\cos x+\text{i}\,\sin x$.  This practice is recommended by some stylebooks for scientific writing, but I don't think it is very common in math.

Blackboard bold

 

Blackboard bold letters are capital Roman letters written with double vertical strokes.   They look like this:

\[\mathbb{A}\,\mathbb{B}\,\mathbb{C}\,\mathbb{D}\,\mathbb{E}\,\mathbb{F}\,\mathbb{G}\,\mathbb{H}\,\mathbb{I}\,\mathbb{J}\,\mathbb{K}\,\mathbb{L}\,\mathbb{M}\,\mathbb{N}\,\mathbb{O}\,\mathbb{P}\,\mathbb{Q}\,\mathbb{R}\,\mathbb{S}\,\mathbb{T}\,\mathbb{U}\,\mathbb{V}\,\mathbb{W}\,\mathbb{X}\,\mathbb{Y}\,\mathbb{Z}\]

In lectures using chalkboards, they are used to imitate boldface.

In print, the most common uses is to represent certain sets of numbers:

Remarks

  • Mathe­ma­tica uses some lower case blackboard bold letters.
  • Many mathe­ma­tical writers disapprove of using blackboard bold in print.  I say the more different letter shapes that are available the better.  Also a letter in blackboard bold is easier to distinguish from ordinary upright letters than a letter in boldface is, particularly on computer screens.
Send to Kindle

The Greek alphabet in math

This is a revision of the portion of the article Alphabets in abstractmath.org that describes the use of the Greek alphabet by mathematicians.

Every letter of the Greek alphabet except omicron is used in math. All the other lowercase forms and all those uppercase forms that are not identical with the Latin alphabet are used.

  • Many Greek letters are used as proper names of mathe­ma­tical objects, for example $\pi$. Here, I provide some usages that might be known to undergraduate math majors.  Many other usages are given in MathWorld and in Wikipedia. In both those sources, each letter has an individual entry.
  • But any mathematician will feel free to use any Greek letter with a meaning different from common usage. This includes $\pi$, which for example is often used to denote a projection.
  • Greek letters are widely used in other sciences, but I have not attempted to cover those uses here.

The letters

  • English-speaking mathematicians pronounce these letters in various ways.  There is a substantial difference between the way American mathe­maticians pronounce them and the way they are pronounced by English-speaking mathe­maticians whose background is from British Commonwealth countries. (This is indicated below by (Br).)
  • Mathematicians speaking languages other than English may pronounce these letters differently. In particular, in modern Greek, most Greek letters are pro­nounced differ­ently from the way we pronounce them; β for example is pro­nounced vēta (last vowel as in "father").
  • Newcomers to abstract math often don’t know the names of some of the letters, or mispronounce them if they do.  I have heard young mathe­maticians pronounce $\phi $ and $\psi $ in exactly the same way, and since they were writing it on the board I doubt that anyone except language geeks like me noticed that they were doing it.  Another one pronounced $\phi $ as  “fee” and $\psi $ as “fie”.

Pronunciation key

  • ăt, āte, ɘgo (ago), bĕt, ēve, pĭt, rīde, cŏt, gō, ŭp, mūte.
  • Stress is indicated by an apostrophe after the stressed syllable, for example ū'nit, ɘgō'.
  • The pronunciations given below are what mathematicians usually use. In some cases this includes pronunciations not found in dictionaries.

 

Alpha: $\text{A},\, \alpha$: ă'lfɘ. Used occasionally as a variable, for example for angles or ordinals. Should be kept distinct from the proportionality sign "∝".

 

Beta: $\text{B},\, \beta $: bā'tɘ or (Br) bē'tɘ. The Euler Beta function is a function of two variables denoted by $B$. (The capital beta looks just like a "B" but they call it “beta” anyway.)  The Dirichlet beta function is a function of one variable denoted by $\beta$.

 

Gamma: $\Gamma, \,\gamma$: gă'mɘ. Used for the names of variables and functions. One familiar one is the $\Gamma$ function. Don’t refer to lower case "$\gamma$" as “r”, or snooty cognoscenti may ridicule you.


Delta: $\Delta \text{,}\,\,\delta$: dĕltɘ. The Dirac delta function and the Kronecker delta are denoted by $\delta $.  $\Delta x$ denotes the change or increment in x and $\Delta f$ denotes the Laplacian of a multivariable function. Lowercase $\delta$, along with $\epsilon$, is used as standard notation in the $\epsilon\text{-}\delta$ definition of limit.


Epsilon: $\text{E},\,\epsilon$ or $\varepsilon$: ĕp'sĭlɘn, ĕp'sĭlŏn, sometimes ĕpsī'lɘn. I am not aware of anyone using both lowercase forms $\epsilon$ and $\varepsilon$ to mean different things. The letter $\epsilon $ is frequently used informally to denoted a positive real number that is thought of as being small. The symbol ∈ for elementhood is not an epsilon, but many mathematicians use an epsilon for it anyway.


Zeta: $\text{Z},\zeta$: zā'tɘ or (Br) zē'tɘ. There are many functions called “zeta functions” and they are mostly related to each other. The Riemann hypothesis concerns the Riemann $\zeta $-function.


Eta: $\text{H},\,\eta$: ā'tɘ or (Br) ē'tɘ. Don't pronounce $\eta$ as "N" or you will reveal your newbieness.


Theta: $\Theta ,\,\theta$ or $\vartheta$: thā'tɘ or (Br) thē'tɘ.  The letter $\theta $ is commonly used to denote an angle. There is also a Jacobi $\theta $-function related to the Riemann $\zeta $-function. See also Wikipedia.


Iota: $\text{I},\,\iota$: īō'tɘ. Occurs occasionally in math and in some computer languages, but it is not common.


Kappa: $\text{K},\, \kappa $: kă'pɘ. Commonly used for curvature.


Lambda: $\Lambda,\,\lambda$: lăm'dɘ. An eigenvalue of a matrix is typically denoted $\lambda $.  The $\lambda $-calculus is a language for expressing abstract programs, and that has stimulated the use of $\lambda$ to define anonymous functions. (But mathematicians usually use barred arrow notation for anonymous functions.)


Mu: $\text{M},\,\mu$: mū.  Common uses: to denote the mean of a distribution or a set of numbers, a measure, and the Möbius function. Don’t call it “u”. 


Nu: $\text{N},\,\nu$: nū.    Used occasionally in pure math,more commonly in physics (frequency or a type of neutrino).   The lowercase $\nu$ looks confusingly like the lowercase upsilon, $\upsilon$. Don't call it "v".


Xi: $\Xi,\,\xi$: zī, sī or ksē. Both the upper and the lower case are used occasionally in mathe­matics. I recommend the ksee pronunciation since it is unambiguous.


Omicron: $\text{O, o}$: ŏ'mĭcrŏn.  Not used since it looks just like the Roman letter.


Pi: $\Pi \text{,}\,\pi$: pī.  The upper case $\Pi $ is used for an indexed product.  The lower case $\pi $ is used for the ratio of the circumference of a circle to its diameter, and also commonly to denote a projection function or the function that counts primes.  See default.


Rho: $\text{P},\,\rho$: rō. The lower case $\rho$ is used in spherical coordinate systems.  Do not call it pee.


Sigma: $\Sigma,\,\sigma$: sĭg'mɘ. The upper case $\Sigma $ is used for indexed sums.  The lower case $\sigma$ (don't call it "oh") is used for the standard deviation and also for the sum-of-divisors function.


Tau: $\text{T},\,\tau$ or τ: tăoo (rhymes with "cow"). The lowercase $\tau$ is used to indicate torsion, although the torsion tensor seems usually to be denoted by $T$. There are several other functions named $\tau$ as well.


Upsilon: $\Upsilon ,\,\upsilon$  ŭp'sĭlŏn. (Note: I have never heard anyone pronounce this letter, and various dictionaries suggest a ridiculous number of different pronunciations.) Rarely used in math; there are references in the Handbook.


Phi: $\Phi ,\,\phi$ or $\varphi$: fē or fī. Used for the totient function, for the “golden ratio” $\frac{1+\sqrt{5}}{2}$ (see default) and also commonly used to denote an angle.  Historically, $\phi$ is not the same as the notation $\varnothing$ for the empty set, but many mathematicians use it that way anyway, sometimes even calling the empty set “fee” or “fie”. 


Chi: $\text{X},\,\chi$: kī.  (Note that capital chi looks like $\text{X}$ and capital xi looks like $\Xi$.) Used for the ${{\chi }^{2}}$distribution in statistics, and for various math objects whose name start with “ch” (the usual transliteration of $\chi$) such as “characteristic” and “chromatic”.


Psi: $\Psi, \,\psi$; sē or sī. A few of us pronounce it as psē or psī to distinguish it from $\xi$.  $\psi$, like $\phi$, is often used to denote an angle.


Omega: $\Omega ,\,\omega$: ōmā'gɘ. $\Omega$ is often used as the name of a domain in $\mathbb{R}^n$. The set of natural numbers with the usual ordering is commonly denoted by $\omega$. Both forms have many other uses in advanced math.  

Send to Kindle

Goodnight, Irene

Look at this list:

Antigone
Aphrodite
Chloe
Hermione
Irene
Kalliope
Nike
Penelope
Phoebe
Zoe

All these are originally Greek names of supernatural beings (except Antigone?). The e is a feminine ending. Most of them are used now as women’s names. When Americans pronounce these names, with one exception they usually pronounce the final e.

The exception is “Irene”. I have heard British people say “I-reenie” but never an American. Is this because of “Good Night Irene”?

At one point when I was maybe eleven years old I bought a 45 of the Weavers singing Good Night Irene. It was my favorite song. The record had Tsena Tsena on the other side. I fell in love with Tsena Tsena which I had never heard before, but I still liked GNI too. For some time after that I looked for other records by the Weavers but I never saw one. Perhaps that was about the time the McCarthyites blacklisted them?

I was also attracted by the harmonies of some pieces by Bach. Now I think that the thing TT and Bach (and others of my favorite music, like some Procol Harum) have in common is the existence of both major and minor chords in the same piece. But when I asked my music teacher what was so wonderful about Bach she said she had never understood Bach.

Oh well.

Send to Kindle