Tag Archives: element

Notation for sets

This is a revision of the section of abstractmath.org on notation for sets.

Sets of numbers

The following notation for sets of numbers is fairly standard.

Remarks

  • Some authors use $\mathbb{I}$ for $\mathbb{Z}$, but $\mathbb{I}$ is also used for the unit interval.
  • Many authors use $\mathbb{N}$ to denote the nonnegative integers instead
    of the positive ones.
  • To remember $\mathbb{Q}$, think “quotient”.
  • $\mathbb{Z}$ is used because the German word for “integer” is “Zahl”.

Until the 1930’s, Germany was the world center for scientific and mathematical study, and at least until the 1960’s, being able to read scientific German was was required of anyone who wanted a degree in science. A few years ago I was asked to transcribe some hymns from a German hymnbook — not into English, but merely from fraktur (the old German alphabet) into the Roman alphabet. I sometimes feel that I am the last living American to be able to read fraktur easily.

Element notation

The expression “$x\in A$” means that $x$ is an element of the set $A$. The expression “$x\notin A$” means that $x$ is not an element of $A$.

“$x\in A$” is pronounced in any of the following ways:

  • “$x$ is in $S$”.
  • “$x$ is an element of $S$”.
  • “$x$ is a member of $S$”.
  • “$S$ contains $x$”.
  • “$x$ is contained in $S$”.

Remarks

  • Warning: The math English phrase “$A$ contains $B$” can mean either “$B\in A$” or “$B\subseteq A$”.
  • The Greek letter epsilon occurs in two forms in math, namely $\epsilon$ and $\varepsilon$. Neither of them is the symbol for “element of”, which is “$\in$”. Nevertheless, it is not uncommon to see either “$\epsilon$” or “$\varepsilon$” being used to mean “element of”.
Examples
  • $4$ is an element of all the sets $\mathbb{N}$, $\mathbb{Z}$, $\mathbb{Q}$, $\mathbb{R}$, $\mathbb{C}$.
  • $-5\notin \mathbb{N}$ but it is an element of all the others.

List notation

Definition: list notation

A set with a small number of elements may be denoted by listing the elements inside braces (curly brackets). The list must include exactly all of the elements of the set and nothing else.

Example

The set $\{1,\,3,\,\pi \}$ contains the numbers $1$, $3$ and $\pi $ as elements, and no others. So $3\in \{1,3,\pi \}$ but $-3\notin \{1,\,3,\,\pi \}$.

Properties of list notation

List notation shows every element and nothing else

If $a$ occurs in a list notation, then $a$ is in the set the notation defines.  If it does not occur, then it is not in the set.

Be careful

When I say “$a$ occurs” I don’t mean it necessarily occurs using that name. For example, $3\in\{3+5,2+3,1+2\}$.

The order in which the elements are listed is irrelevant

For example, $\{2,5,6\}$ and $\{5,2,6\}$ are the same set.

Repetitions don’t matter

$\{2,5,6\}$, $\{5,2,6\}$, $\{2,2,5,6 \}$ and $\{2,5,5,5,6,6\}$ are all different representations of the same set. That set has exactly three elements, no matter how many numbers you see in the list notation.

Multisets may be written with braces and repeated entries, but then the repetitions mean something.

When elements are sets

When (some of) the elements in list notation are themselves sets (more about that here), care is required.  For example, the numbers $1$ and $2$  are not elements of the set \[S:=\left\{ \left\{ 1,\,2,\,3 \right\},\,\,\left\{ 3,\,4 \right\},\,3,\,4 \right\}\]The elements listed include the set $\{1, 2, 3\}$ among others, but not the number $2$.  The set $S$ contains four elements, two sets and two numbers. 

Another way of saying this is that the element relation is not transitive: The facts that $A\in B$ and $B\in C$ do not imply that $A\in C$. 

Sets are arbitrary

  • Any mathematical object can be the element of a set.
  • The elements of a set do not have to have anything in common.
  • The elements of a set do not have to form a pattern.
Examples
  • $\{1,3,5,6,7,9,11,13,15,17,19\}$ is a set. There is no point in asking, “Why did you put that $6$ in there?” (Sets can be arbitrary.)
  • Let $f$ be the function on the reals for which $f(x)=x^3-2$. Then \[\left\{\pi^3,\mathbb{Q},f,42,\{1,2,7\}\right\}\] is a set. Sets do not have to be homogeneous in any sense.


Setbuilder notation

Definition:

Suppose $P$ is an assertion. Then the expression “$\left\{x|P(x) \right\}$” denotes the set of all objects $x$ for which $P(x)$ is true. It contains no other elements.

  • The notation “$\left\{ x|P(x) \right\}$” is called setbuilder notation.
  • The assertion $P$ is called the defining condition for the set.
  • The set $\left\{ x|P(x) \right\}$ is called the truth set of the assertion $P$.
Examples

In these examples, $n$ is an integer variable and $x$ is a real variable..

  • The expression “$\{n| 1\lt n\lt 6 \}$” denotes the set $\{2, 3, 4, 5\}$. The defining condition is “$1\lt n\lt 6$”.  The set $\{2, 3, 4, 5\}$ is the truth set of the assertion “n is an integer and $1\lt n\lt 6$”.
  • The notation $\left\{x|{{x}^{2}}-4=0 \right\}$ denotes the set $\{2,-2\}$.
  • $\left\{ x|x+1=x \right\}$ denotes the empty set.
  • $\left\{ x|x+0=x \right\}=\mathbb{R}$.
  • $\left\{ x|x\gt6 \right\}$ is the infinite set of all real numbers bigger than $6$.  For example, $6\notin \left\{ x|x\gt6 \right\}$ and $17\pi \in \left\{ x|x\gt6 \right\}$.
  • The set $\mathbb{I}$ defined by $\mathbb{I}=\left\{ x|0\le x\le 1 \right\}$ has among its elements $0$, $1/4$, $\pi /4$, $1$, and an infinite number of
    other numbers. $\mathbb{I}$ is fairly standard notation for this set – it is called the unit interval.

Usage and terminology

  • A colon may be used instead of “|”. So $\{x|x\gt6\}$ could be written $\{x:x\gt6\}$.
  • Logicians and some mathematicians called the truth set of $P$ the extension of $P$. This is not connected with the usual English meaning of “extension” as an add-on.
  • When the assertion $P$ is an equation, the truth set of $P$ is usually called the solution set of $P$. So $\{2,-2\}$ is the solution set of $x^2=4$.
  • The expression “$\{n|1\lt n\lt6\}$” is commonly pronounced as “The set of integers such that $1\lt n$ and $n\lt6$.” This means exactly the set $\{2,3,4,5\}$. Students whose native language is not English sometimes assume that a set such as $\{2,4,5\}$ fits the description.

Setbuilder notation is tricky

Looking different doesn’t mean they are different.

A set can be expressed in many different ways in setbuilder notation. For example, $\left\{ x|x\gt6 \right\}=\left\{ x|x\ge 6\text{ and }x\ne 6 \right\}$. Those two expressions denote exactly the same set. (But $\left\{x|x^2\gt36 \right\}$ is a different set.)

Russell’s Paradox

In certain areas of math research, setbuilder notation can go seriously wrong. See Russell’s Paradox if you are curious.

Variations on setbuilder notation

An expression may be used left of the vertical line in setbuilder notation, instead of a single variable.

Giving the type of the variable

You can use an expression on the left side of setbuilder notation to indicate the type of the variable.

Example

The unit interval $I$ could be defined as \[\mathbb{I}=\left\{x\in \mathrm{R}\,|\,0\le x\le 1 \right\}\]making it clear that it is a set of real numbers rather than, say rational numbers.  You can always get rid of the type expression to the left of the vertical line by complicating the defining condition, like this:\[\mathbb{I}=\left\{ x|x\in \mathrm{R}\text{ and }0\le x\le 1 \right\}\]

Other expressions on the left side

Other kinds of expressions occur before the vertical line in setbuilder notation as well.

Example

The set\[\left\{ {{n}^{2}}\,|\,n\in \mathbb{Z} \right\}\]consists of all the squares of integers; in other words its elements are 0,1,4,9,16,….  This definition could be rewritten as $\left\{m|\text{ there is an }n\in \mathrm{}\text{ such that }m={{n}^{2}} \right\}$.

Example

Let $A=\left\{1,3,6 \right\}$.  Then $\left\{ n-2\,|\,n\in A\right\}=\left\{ -1,1,4 \right\}$.

Warning

Be careful when you read such expressions.

Example

The integer $9$ is an element of the set \[\left\{{{n}^{2}}\,|\,n\in \text{ Z and }n\ne 3 \right\}\]It is true that $9={{3}^{2}}$ and that $3$ is excluded by the defining condition, but it is also true that $9={{(-3)}^{2}}$ and $-3$ is not an integer ruled out by the defining condition.

Reference

Sets. Previous post.

Acknowledgments

Toby Bartels for corrections.

Creative Commons License< ![endif]>

This work is licensed under a Creative Commons Attribution-ShareAlike 2.5 License.

Send to Kindle

Sets

I have been working my way through abstractmath.org, revising the articles and turning them into pure HTML so they will be easier to update. In some cases I am making substantial revisions. In particular, many of the articles need a more modern point of view.

 

The math community’s understanding of sets and structures has changed because of category theory and will change
because of homotopy type theory.

 

This post considers some issues and possibilities concerning the chapter on sets.

The references listed at the end of the article include several about homotopy type theory. They provide different viewpoints and require different levels of sophistication.

A specification of the concept of set

The abmath article Specification of sets specifies what a set is in this way:

A set is a single math object distinct from but completely determined by what its elements are.

I have used this specification for sets since the eighties, first in my Discrete Math lecture notes and then in abstractmath.org. It has proved useful because it is quite simple and the statement implies lots of immediate consequences. Each of the first four consequences in this list below exposes a confusion that some students have.

Consequences of the specification

  1. A set is a math object. It has the same status as the number “$143$” and the sine function and the real line: they are all objects of math. A set is not merely a typographically convenient way to define a certain collection of things.
  2. A set is a single object. Many beginners seem to have in their head that the set $\{3,4\}$ is two things.
  3. A set is distinct from its elements. The set $\{3,4\}$ is not $3$, it is not $4$, it is not a number at all.
  4. The spec implies that $\{3,4\}$ is the same set as $\{4,3\}$. Some students think they understand this but some of their mistakes show that they don’t really understand it.
  5. On the other hand, $\{3,5\}$ is a different set from $\{3,4\}$. I haven’t noticed this bothering students but it bothers me. See the discussion on ursets below.

Those consequences make the spec a useful teaching tool. But if a beginning abstract math student gets very far in their studies, some complications come up.

Defining “set”

In the late nineteenth century, math people started formally defining particular math structures such as groups and various
kinds of spaces. This was normally done by starting with a set and adding structure.

You may think that “starting with a set and adding structure” brushes a lot of complications under the rug. Well, don’t look under the rug, at least not right now.

The way they thought about sets was a informal version of what is now called naive set theory. In particular, they freely defined particular sets using what is essentially setbuilder notation, producing sets in a way which (I claim) satisfies my specification.

Bertrand Russell wakes everyone up

Then along came Russell’s paradox. In the context of this discussion, the paradox implied that the spec for sets is not a definition.The spec provides a set of necessary conditions for being a set. But it is not sufficient. You can say “Let $S$ be the set of all sets that…[satisfy some condition]” until you are blue in the face, but there are conditions (including the empty condition) that don’t define a set.

The Zermelo-Fraenkel axioms

The Zermelo-Fraenkel axioms were designed to provide a definition that didn’t create contradictions. The axioms accomplish this by creating a sort of hierarchy that requires that each set must be defined in terms of sets defined previously. They provide a good way (but not the only one) of providing a way of legitimizing our use of sets in math.

Observe that the “set of all sets” is certainly not “defined” in terms of previously defined sets!

Sets as a foundation

During those days there was a movement to provide a solid foundation for mathematics. After Zermelo-Fraenkel came along, the progress of thinking seemed to be:

  1. Sets are in trouble.
  2. Zermelo-Fraenkel solves our set difficulties.
  3. So let’s require that every math object be a set.

That list is oversimplified. In particular, the development of predicate logic was essential to this approach, but I can’t write about everything at once.

This leads to monsters such as the notorious definition of ordered pair:

The ordered pair $(a,b)$ is the set $\{a,\{b\}\}$.

This leads to the ludicrous statement that $a$ is an element of $(a,b)$ but that $b$ is not.

By saying every math object may be modeled as a set with structure, ZF set theory becomes a model of all of math. This approach gives a useful proof that all of math is as consistent as ZF set theory is.

But many mathematicians jumped to the conclusion that every math object must be a set with structure. This approach does not match the way mathematicians think about math objects. In particular, it makes computerized proof assistance hard to use because you have to translate your thinking into sets and first order logic.

Sets by category theory

“A mathematical object is determined by the role it plays in a category.” — A. Grothendieck

In category theory, you define math structures in terms of how they relate to other math structures. This shifts the emphasis from

What is it?

to

What are its properties?

For example, an ordered pair is a mathematical object $p$ determined by these properties:

  • It determines mathematical objects $p_1$ and $p_2$.
  • $p$ is completely determined by what $p_1$ is and what $p_2$ is.
  • If $p$ and $q$ are ordered pairs and $p_1=q_1$ and $p_2=q_2$ then $p=q$.

Categorical definition of set

“Categorical” here means “as understood in category theory”. It unfortunately has a very different meaning in model theory (set of axioms with only one model up to isomorphism) and in general usage, as in “My answer is categorically NO” said by someone who is red in the face. The word “categorial” has an entirely different meaning in linguistics. *Sigh*.

William Lawvere has produced an axiomatization of the category of sets.
The most accessible introduction to it that I know of is the article Rethinking set theory, by Tom Leinster. This axiomatization defines sets by their relationship with each other and other math objects in much the same way as the categorical definition of (for example) groups gives a definition of groups that works in any category.

“Set” means two different things

The word set as used informally has two different meanings.

  • According to my specification of sets, $\{3,4\}$ is a set and so is $\{3,5\}$.
  • $\{3,4\}$ and $\{3,5\}$ are not the same set because they don’t have the same elements.
  • But in the category of sets, any two $2$-element sets are isomorphic. (So are any two seven element sets.)
  • From a categorical point of view, two isomorphic objects in a category can be be thought of as the same object, with a caveat that you have better make it clear which isomorphism you are thinking of.

One of the great improvements in mathematics that homotopy type theory supplies is a systematic way of keeping track of the isomorphisms, the isomorphisms between the isomorphisms, and so on ad infinitum (literally). But note: I am just beginning to understand htt, so regard this remark as something to be suspicious of.

  • But $\{3,4\}$ and $\{3,5\}$ may not be thought of as the same object according to the spec I gave, because they don’t have the same elements.
  • This means that the traditional idea of set is not the same as the strict categorical idea of set.

I suggest that we keep the word “set” for the traditional concept and call the strict categorical concept an urset.

A traditional set is a structure on an urset

The traditional set $\{3,5\}$ consists of the unique two-element urset coindexed on the integers.

A (ur)set $S$ coindexed by a math structure $A$ is a monic map from $S$ to the underlying set of $A$. In this example, the map has codomain the integers and takes one element of the two-element urset to $3$ and the other to $5$.

Note added 2014-10-05 in response to Toby Bartels’ comment: I am inclined to use the names “abstract set” for “urset” and “concrete set” for coindexed sets when I revise the articles on sets. But most of the time we can get away with just “set”.

There is clearly no isomorphism of coindexed sets from $\{3,4\}$ to $\{3,5\}$, so those two traditional sets are not equal in the category of coindexed sets.

I made up the phrase “coindexed set” to use in this sense, since it is a kind of opposite of indexed set. If terminology for this already exists, lemme know. Linguists will tell you they use the word “coindexed” in a different sense.

Elements

The concept of “element” in categorical thinking is very different from the traditional idea, where an element of a set can be any mathematical object. In categorical thinking, an element of an object $A$ of a category $\mathbf{C}$ is an arrow $1\to A$ where $1$ is the terminal object. Thus $4$ as an integer is the arrow $1\to \mathbb{Z}$ whose unique value is the number $4$.

An object is an element of only one set

In the usage of category theory, the arrow $1\to\mathbb{R}$ whose value is the real number $4$ is a different math object from the arrow $1\to\mathbb{Z}$ whose value is the integer $4$.

A category theorist will probably agree that we can identify the integer $4$ with the real number $4$ via the well known canonical embedding of the ring of integers into the field of real numbers. But in categorical thinking you have to keep all such embeddings in mind; you don’t say the integer $4$ is the same thing as the real number $4$. (Most computer languages keep them distinct, too.)

This difference is actually not hard to get used to and is in fact an improvement over traditional set theory. When you do category theory you use lots of commutative diagrams. The embeddings show up as monic arrows and are essential in keeping the different objects ($\mathbb{Z}$ and $\mathbb{R}$ in the example) separate.

The paper Relating first-order set theory and elementary toposes, by Awodey, Butz, Simpson and Streicher, introduces a concept of “structural system of inclusions” that appears to me to restore the idea of object being an element of more than one set for many purposes.

Homotopy type theory allows an object to have only one type, with much the same effect as in the categorical approach.

Variable elements

The arrow $1\to \mathbb{Z}$ that picks out the integer $4$ is a constant function. It is useful to think of any arrow $A\to B$ of any category as a variable element (or generalized element) of the object $B$. For example, the function $f:\mathbb{R}\to \mathbb{R}$ defined by $f(x)=x^2$ allows you to
think of $x^2$ as a variable number with real parameter. This is another way of thinking about the “$y$” in the equation $y=x^2$, which is commonly called a dependent variable.

One way to think about $y$ is that some statements about it are true, some are false, and many statements are neither true nor false.

  • $y\geq 0$ is true.
  • $y\lt0$ is false.
  • $y\leq1$ is neither true nor false.

This way of thinking about variable objects clears up a lot of confusion about variables and deserves to be more widely used in teaching.

The book Category theory for computing science provides some examples of the use of variable elements as a way of thinking about categorical ideas.

References

Creative Commons License< ![endif]>

This work is licensed under a Creative
Commons Attribution-ShareAlike 2.5
License
.

Send to Kindle

Dysfunctions in doing math II

This post continues Dysfunctions in doing math I, with some more revisions to the article in abstractmath on dysfunctions.

Elements

First Myth

MYTH: There are two kinds of mathematical objects: "sets" and "elements".

This is the TRUTH: Being an element is not a property that some math objects have and others don’t. “Element” is a binary relation; it relates an object and a set. So “$3$ is an element” means nothing, but “$3$ is an element of the set of integers” is true and relates two mathematical objects to each other.


Any mathematical object can be an element of a set
In particular, any set can be the
element of another set.

Examples

  • The number $42$ is not a set, but it is an element of the set $\{5,10,41,42,-30\}$.
  • The sine function is not a set, but it is an element of the set of all differentiable functions defined on the real numbers.
  • The set $\{1,2,5\}$ is a set, but it is also an element of the set $\left\{\{1,2,5\},\{3,5\}, \emptyset,\{42\}\right\}$. It is not an element of the set $\{1,2,3,4,5\}$.

If you find these examples confusing, read this.

Second Myth

MYTH: The empty set is an element of every set.

This is the TRUTH:
The empty set is an element of a set $S$ if and only if the definition of $S$ requires it to be an element.

Examples

  • The empty set is not an element of every set. It is not an element of the set $\{2,3\}$ for example; that set has only the elements $2$ and $3$.
  • The empty set is an element of the set $\{2,3,\emptyset\}$.
  • The empty set is a subset of every set.

Other ways to misunderstand sets

The myths just listed are explicit; students tell them to each other. The articles below tell you about other misunderstanding about sets which are usually subconscious.

Enthymeme

An enthymeme is an argument based partly on unexpressed beliefs. Beginners at the art of writing proofs often produce enthymemes.

Example

In the process of showing that the intersection of two equivalence relations $E$ and $E’$ is also an equivalence relation, a student may write “$E\cap E’$ is transitive because $E$ and $E’$ are transitive.”

  • This is an enthymeme; it omits stating, much less proving, that the intersection of transitive relations is transitive.
  • The student may “know” that it is obvious that the intersection of transitive relations is transitive, having never considered the similar question of the union of transitive relations.
  • It is very possible that the student possesses (probably subconsciously) a malrule to the effect that for any property $P$ the union or intersection of relations with property $P$ also has property $P$.
  • The instructor very possibly suspects this. For some students, of course, the suspicion will be unjustified, but for which ones?
  • This sort of thing is a frequent source of tension between student and instructor: “Why did you take points off because I assumed the intersection of transitive relations is transitive? It’s true!”

Malrule

A malrule is an incorrect rule for syntactic transformation of a mathematical expression.

Example

The malrule $\sqrt{x+y}=\sqrt{x}+\sqrt{y}$ invented by algebra students may come from the pattern given by the distributive law $a(x+y)=ax+ay$. The malrule invented by many first year calculus students that transforms $\frac{d(uv)}{dx}$ to $\frac{du}{dx}\frac{dv}{dx}$ may have been generated by extrapolating from the correct rule
\[\frac{d(u+v)}{dx}=\frac{du}{dx}+\frac{dv}{dx}\] by changing addition to multiplication. Both are examples of “every operation is linear”, which students want desperately to be true, although they are not aware of it.

Existential bigamy

Beginning abstract math students sometimes make a particular type of mistake that occurs in connection with a property $P$ of an mathematical object $x$ that is defined by requiring the existence of an item $y$ with a certain relationship to $x$. When students have a proof that assumes that there are two items $x$ and $x’$ with property $P$, they sometimes assume that the same $y$ serves for both of them. This mistake is called existential bigamy: The fact that Muriel and Bertha are both married (there is a person to whom Muriel is married and there is a person to whom Bertha is married) doesn’t mean they are married to the same person.

Example

Let $m$ and $n$ be integers. By definition, $m$ divides $n$ if there is an integer $q$ such that $n=qm$. Suppose you are asked to prove that if $m$ divides both $n$ and $p$, then $m$ divides $n+p$. If you begin the proof by saying, “Let $n = qm$ and $p = qm$…” then you are committing existential bigamy.

You need to begin the proof this way: “Let $n = qm$ and $p = q’m…”$

Send to Kindle