Tag Archives: David Tall

Insights into mathematical definitions

My general practice with abstractmath.org has been to write about the problems students have at the point where they first start studying abstract math, with some emphasis on the languages of math. I have used my own observations of students, lexicographical work I did in the early 2000’s, and papers written by workers in math ed at the college level.

A few months ago, I finished revising and updating abstractmath.org. This took rather more than a year because among other things I had to reconstitute the files so that the html could be edited directly. During that time I just about quit reading the math ed literature. In the last few weeks I have found several articles that have changed my thinking about some things I wrote in abmath, so now I need to go back and revise some more!

In this post I will make some points about definitions that I learned from the paper by Edwards and Ward and the paper by Selden and Selden

I hope math ed people will read the final remarks.

Peculiarities of math definitions

When I use a word, it means just what I choose it to mean–neither more nor less.” — Humpty Dumpty

A mathematical definition is fundamentally different from other sorts of definitions in two different ways. These differences are not widely appreciated by students or even by mathematicians. The differences cause students a lot of trouble.

List of properties

One of the ways in which a math definition is different from other kinds is that the definition of a math object is given by accumulation of attributes, that is, by listing properties that the object is required to have. Any object defined by the definition must have all those properties, and conversely any object with all the properties must be an example of the type of object being defined. Furthermore, there is no other criterion than the list of attributes.

Definitions in many fields, including some sciences, don’t follow this rule. Those definitions may list some properties the objects defined may have, but exceptions may be allowed. They also sometimes give prototypical examples. Dictionary definitions are generally based on observation of usage in writing and speech.

Imposed by decree

One thing that Edwards and Ward pointed out is that, unlike definitions in most other areas of knowledge, a math definition is stipulated. That means that meaning of (the name of) a math object is imposed on the reader by decree, rather than being determined by studying the way the word is used, as a lexicographer would do. Mathematicians have the liberty of defining (or redefining) a math object in any way they want, provided it is expressed as a compulsory list of attributes. (When I read the paper by Edwards and Ward, I realized that the abstractmath.org article on math definitions did not spell that out, although it was implicit. I have recently revised it to say something about this, but it needs further work.)

An example is the fact that in the nineteenth century some mathe­maticians allowed $1$ to be a prime. Eventually they restricted the definition to exclude $1$ because including it made the statement of the Fundamental Theorem of Arithmetic complicated to state.

Another example is that it has become common to stipulate codomains as well as domains for functions.

Student difficulties

Giving the math definition low priority

Some beginning abstract math students don’t give the math definition the absolute dictatorial power that it has. They may depend on their understanding of some examples they have studied and actively avoid referring to the definition. Examples of this are given by Edwards and Ward.

Arbitrary bothers them

Students are bothered by definitions that seem arbitrary. This includes the fact that the definition of “prime” excludes $1$. There is of course no rule that says definitions must not seem arbitrary, but the students still need an explanation (when we can give it) about why definitions are specified in the way they are.

What do you DO with a definition?

Some students don’t realize that a definition gives a magic formula — all you have to do is say it out loud.
More generally, the definition of a kind of math object, and also each theorem about it, gives you one or more methods to deal with the type of object.

For example, $n$ is a prime by definition if $n\gt 1$ and the only positive integers that divide $n$ are $1$ and $n$. Now if you know that $p$ is a prime bigger than $10$ then you can say that $p$ is not divisible by $3$ because the definition of prime says so. (In Hogwarts you have to say it in Latin, but that is no longer true in math!) Likewise, if $n\gt10$ and $3$ divides $n$ then you can say that $n$ is not a prime by definition of prime.

The paper by Bills and Tall calls this sort of thing an operable definition.

The paper by Selden and Selden gives a more substantial example using the definition of inverse image. If $f:S\to T$ and $T’\subseteq T$, then by definition, the inverse image $f^{-1}T’$ is the set $\{s\in S\,|\,f(s)\in T’\}$. You now have a magic spell — just say it and it makes something true:

  • If you know $x\in f^{-1}T’$ then can state that $f(x)\in T’$, and all you need to justify that statement is to say “by definition of inverse image”.
  • If you know $f(x)\in T’$ then you can state that $x\in f^{-1}T’$, using the same magic spell.

Theorems can be operable, too. Wiles’ Theorem wipes out the possibility that there is an integer $n$ for which $n^{42}=365^{42}+666^{42}$. You just quote Wiles’ Theorem — you don’t have to calculate anything. It’s a spell that reveals impossibilities.

What the operability of definitions and theorems means is:

A definition or theorem is not just a static statement,it is a weapon for deducing truth.

Some students do not realize this. The students need to be told what is going on. They do not have to be discarded to become history majors just because they may not have the capability of becoming another Andrew Wiles.

Final remarks

I have a wish that more math ed people would write blog posts or informal articles (like the one by Edwards and Ward) about what that have learned about students learning math at the college level. Math ed people do write scholarly articles, but most of the articles are behind paywalls. We need accessible articles and blog posts aimed at students and others aimed at math teachers.

And feel free to steal other math ed people’s ideas (and credit them in a footnote). That’s what I have been doing in abstractmath.org and in this blog for the last ten years.

References


  • Bills, L., & Tall, D. (1998). Operable definitions in advanced mathematics: The case of the least upper bound. In A. Olivier & K. Newstead (Eds.), Proceedings of the 22nd Conference of the International Group for the Psychology of Mathematics Education, Vol. 2 (pp. 104-111). Stellenbosch, South Africa: University of Stellenbosch.
  • B. S. Edwards, and M. B. Ward, Surprises from mathematics education research: Student (mis) use of mathematical definitions (2004). American Mathematical Monthly, 111, 411-424.
  • G. Lakoff, Women, Fire and Dangerous
    Things
    . University of Chicago Press, 1990. See his discussion of concepts and prototypes.
  • J. Selden and A. Selden, Proof Construction Perspectives: Structure, Sequences of Actions, and Local Memory, Extended Abstract for KHDM Conference, Hanover, Germany, December 1-4, 2015. This paper may be downloaded from Academia.edu.
  • A Handbook of mathematical discourse, by Charles Wells. See concept, definition, and prototype.
  • Definitions, article in abstractmath.org. (Some of the ideas in this post have now been included in this article, but it is due for another revision.)
  • Definitions in logic and mathematics in Wikipedia.
  • Creative Commons License

    This work is licensed under a Creative Commons Attribution-ShareAlike 2.5 License.

    Send to Kindle

    Thinking about abstract math

     

    The abstraction cliff

    In universities in the USA, a math major typically starts with calculus, followed by courses such as linear algebra, discrete math, or a special intro course for math majors (which may be taken simultaneously with calculus), then go on to abstract algebra, analysis, and other courses involving abstraction and proofs.

    At this point, too many of them hit a wall; their grades drop and they change majors.  They had been getting good grades in high school and in calculus because they were strong in algebra and geometry, but the sudden increase in abstraction in the newer courses completely baffles them. I believe that one big difficulty is that they can't grasp how to think about abstract mathematical objects.  (See Reference [9] and note [a].)   They have fallen off the abstraction cliff.  We lose too many math majors this way. (Abstractmath.org is my major effort to address the problems math majors have during or after calculus.)

    This post is a summary of the way I see how mathematicians and students think about math.  I will use it as a reference in later posts where I will write about how we can communicate these ways of thinking.

    Concept Image

    In 1981, Tall and Vinner  [5] introduced the notion of the concept image that a person has about a mathematical concept or object.   Their paper's abstract says

    The concept image consists of all the cognitive structure in the individual's mind that is associated with a given concept. This may not be globally coherent and may have aspects which are quite different from the formal concept definition.

    The concept image you may have of an abstract object generally contains many kinds of constituents:

    • visual images of the object
    • metaphors connecting the object to other concepts
    • descriptions of the object in mathematical English
    • descriptions and symbols of the object in the symbolic language of math
    • kinetic feelings concerning certain aspects of the object
    • how you calculate parameters of the object
    • how you prove particular statements about the object

    This list is incomplete and the items overlap.  I will write in detail about these ideas later.

    The name "concept image" is misleading [b]), so when I have written about them, I have called them metaphors or mental representations as well as concept images, for example in [3] and [4].

    Abstract mathematical concepts

    This is my take on the notion of concept image, which may be different from that of most researchers in math ed. It owes a lot to the ideas of Reuben Hersh [7], [8].

    • An abstract mathematical concept is represented physically in your brain by what I have called "modules" [1] (physical constituents or activities of the brain [c]).
    • The representation generally consists of many modules.  They correspond to the list of constituents of a concept image given above.  There is no assumption that all the modules are "correct".
    • This representation exists in a semi-public network of mathematicians' and students' brains. This network exercises (incomplete) control over your personal representation of the abstract structure by means of conversation with other mathematicians and reading books and papers.  In this sense, an abstract concept is a social object.  (This is the only point of view in the philosophy of math that I know of that contains any scientific content.)

    Notes

    [a]  Before you object that abstraction isn't the only thing they have trouble with, note that a proof is an abstract mathematical object. The written proof is a representation of the abstract structure of the proof.  Of course, proofs are a special kind of abstract structure that causes special problems for students.

    [b] Cognitive science people use "image" to include nonvisual representations, but not everyone does.  Indeed, cognitive scientists use "metaphor" as well with a broader meaning than your high school English teacher.  A metaphor involves the cognitive merging of parts of two concepts (specifically with other parts not merged). See [6].

    [c] Note that I am carefully not saying what the modules actually are — neurons, networks of neurons, events in the brain, etc.   From the point of view of teaching and understanding math, it doesn't matter what they are, only that they exist and live in a society where they get modified by memes  (ideas, attitudes, styles physically transmitted from brain to brain by speech, writing, nonverbal communication, appearance, and in other ways).

    References

    1. Math and modules of the mind (previous post)
    2. Mathematical Concepts (previous post)
    3. Mental, physical and mathematical representations (previous post)
    4. Images and Metaphors (abstractmath.org)
    5. David Tall and Schlomo Vinner, Concept Image and Concept Definition in Mathematics with particular reference to limits and continuity, Journal Educational Studies in Mathematics, 12 (May, 1981), no. 2, 151–169.
    6. Conceptual metaphor (Wikipedia article).
    7. What is mathematics, really? by Reuben Hersh, Oxford University Press, 1999.  Read online at Questia.
    8. 18 Unconventional Essays on the Nature of Mathematics, by Reuben Hersh. Springer, 2005.
    9. Mathematical objects (abstractmath.org).

     

     

    Send to Kindle