Tag Archives: David Mumford

My early life as a mathematician

My early life as a mathematician.

Revised 22 January 2016.

In 1965, I received my Ph.D. at Duke University based on a dissertation about polynomials over finite fields. My advisor was Leonard Carlitz.

In Carlitz’s algebra course, the textbook was Van der Waerden’s Algebra. It is way too old-fashioned to be used nowadays, but it did indeed present post-Noether type abstract algebra. Carlitz also had me read large chunks of Martin Weber’s Lehrbuch der Algebra, written in German in 1895 (so totally not post-Noether) and published using Fraktur. A few years ago one of my sons asked me to retype the words to some of the songs written in Fraktur in a German-American shape note book in Roman type (but still in German), which I did. This was for German teachers in the Concordia Language Villages to use with their students. I sometimes wonder if I am the last person on earth able to read Fraktur fluently.

I learned mathematical logic from Joe Shoenfield from his dittoed notes that later became an excellent textbook. I rediscovered Craig’s Trick while working on problem he gave. That considerably strengthened my sense of self-worth.

I accepted a job at Western Reserve University, now Case Western Reserve University, where I stayed until I retired in 1999. In the few years after 1965, I wrote several papers about finite fields. They are all summarized in the book Finite Fields, by Rudolf Lidl and Harald Niederreiter.

I was almost immediately attracted to category theory and to computing science, both of which Carlitz hated. I did not let that stop me. (Now is the time to say, Follow The Beat of your Own Drum or some such cliché.)

Early on, Paul Dedecker was at CWRU briefly, and from him I learned about sheaves, cribles and the like. This inspired me to take part in an algebraic geometry summer school at Bowdoin College, where I learned from lectures by David Mumford and by reading his Red Book when it was still red.

Because one of the papers in finite fields showed that certain types of permutation polynomials formed wreath products of groups, I also pursued group theory, in particular by taking part in the finite group theory summer school at Bowdoin in 1970.

During that time I pored over Beck’s thesis on cohomology, which with the group theory I had learned resulted in my paper Automorphisms of group extensions. That paper has the most citations of all my research papers.

In the early days, I had several graduate students. All of them worked in group theory. One of them, Shair Ahmad, went on to produce several Ph.D. students, all in differential equations and dynamical systems.

One thing I can brag about is that I never ever told him I hated differential equations or dynamical systems. In fact, I didn’t hate either one. There were people in the department in both fields and they made me jealous the way they could model real life phenomena with those tools. One relevant point about that is that I was a liberal arts math major from Oberlin before going to Duke and had had very few courses in any kind of science. This made me very different from most people in the department, who has B.S. undergrad degrees.

In those days, John Isbell and Peter Hilton were in the math department at CWRU for awhile, which boosted my knowledge and interest in category theory. Hilton arranged for me to spend a year at the E.T.H. in Zürich, where I met Michael Barr. I eventually wrote two books on category theory with him. But that is getting away from Early Days, so I will stop here.

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 2.5 License.

Send to Kindle

Grothendieck

In 1965, I received my Ph.D. with a dissertation about polynomials over finite fields. I accepted a job at Western Reserve U., now Case W.R.U. There I immediately began trying to learn category theory, which I thought was the best math thing since sliced bread. (My thesis adviser hated category theory. He also hated computer science, which also fascinated me.)

I was really lucky, for during the next few years John Isbell, Peter Hilton and Paul Dedecker came to stay for a few years, allowing me to pick up a decent understanding of categories. Dedecker only stayed one year, but from him I learned about sheaves, cribles and the like, which inspired me to spend a summer at Bowdoin College learning about algebraic geometry from David Mumford and his Red Book.

It was only gradually that I learned that many of the most interesting ideas came from Alexandre Grothendieck. His ideas are now everywhere in math and we should all be grateful for his life and work.  I wish he had continued working.  He could have done wonders for computing science.

 

Send to Kindle

Explaining “higher” math to beginners


The interactive example in this post require installing Wolfram CDF player, which is free and works on most desktop computers using Firefox, Safari and Internet Explorer, but not Chrome. The source code is the Mathematica Notebook algebra2.nb, which is available for free use under a Creative Commons Attribution-ShareAlike 2.5 License. The notebook can be read by CDF Player if you cannot make the embedded versions in this post work.

Notes on viewing

Explaining math

I am in the process of writing an explanation of monads for people with not much math background.  In that article, I began to explain my ideas about exposition for readers at that level and after I had written several paragraphs decided I needed a separate article about exposition.  This is that article. It is mostly about language.

Who is it written for?

Interested laypeople

There are many recent books explaining some aspect of math for people who are not happy with high school algebra; some of them are listed in the references.  They must be smart readers who know how to concentrate, but for whom algebra and logic and definition-theorem-proof do not communicate.  They could be called interested laypeople, but that is a lousy name and I would appreciate suggestions for a better name. 

Math newbies

My post on monads is aimed at people who have some math, and who are interested in "understanding" some aspect of "higher math"; not understanding in the sense of being able to prove things about monads, but merely how to think about them.   I will call them math newbies.  Of course, I am including math majors, but I want to make it available to other people who are willing to tackle mathematical explanations and who are interested in knowing more about advanced stuff. 

These "other people" may include people (students and practitioners) in other science & technology areas as well as liberal-artsy people.  There are such people, I have met them.  I recall one theologian who asked me about what was the big deal about ruler-and-compass construction and who seemed to feel enlightened when I told him that those constructions preserve exactly the ideal nature of geometric objects.  (I later found out he was a famous theologian I had never heard of, just like Ngô Bảo Châu is a famous mathematician nonmathematicians have never heard of.)

Algebra and other foreign languages

If you are aiming at interested laypeople you absolutely must avoid algebra.  It is a foreign language that simply does not communicate to most of the educated people in the world.  Learning a foreign language is difficult. 

So how do you avoid algebra?  Well, you have to be clever and insightful.  The book by Matthew Watkins (below) has absolutely wonderful tricks for doing that, and I think anyone interested in math exposition ought to read it.  He uses metaphors, pictures and saying the same thing in different words. When you finish reading his book, you won't know how to prove statements related to the prime number theorem (unless you already knew how) but you have a good chance of understanding the statement of some theorem in that subject. See my review of the book for more details.

If your article is for math newbies, you don't have to avoid algebra completely.  But remember they are newbies and not as fluent as you are — they do things analogous to "Throw Mama from the train a kiss" and "I can haz cheeseburger?".  But if you are trying to give them some way of thinking about a concept, you need many other things (metaphors, illustrative applications, diagrams…)  You don't need the definition-theorem-proof style too common in "exposition".  (You do need that for math majors who want to become professional mathematicians.) 

Unfamiliar notation

In writing expositions for interested laypeople or math newbies, you should not introduce an unfamiliar notation system (which is like a minilanguage).  I expect to write the monad article without commutative diagrams.  Now, commutative diagrams are a wonderful invention, the best way of writing about categories, and they are widely used by other than category theorists.  But to explain monads to a newbie by introducing and then using commutative diagrams is like incorporating a short grammar of Spanish which you will then use in an explanation of Sancho Panza's relationship with Don Quixote. 

The abstractmath article on and, or and not does not use any of the several symbolic notations for logic that are in use.  The explanations simply use "and", "or" and "not".  I did introduce the notation, but didn't use it in the explanations.  When I rewrite the article I expect to put the notation at the end of the article instead of in the middle.  I expect to rewrite the other articles on mathematical reasoning to follow that practice, too.

Technical terminology

This is about the technical terminology used in math.  Technical terminology belongs to the math dialect (or register) of English, which is not a foreign language in the same sense as algebra.  One big problem is changing the meaning of ordinary English words to a technical meaning.  This requires a definition, and definitions are not something most people take seriously until they have been thoroughly brainwashed into using mathematical methodology.  Math majors have to be brainwashed in this way, but if you are writing for laypeople or newbies you cannot use the technology of formal definition.

Groups, simple groups

"You say the Monster Group is SIMPLE???  You must be a GENIUS!"  So Mark Ronan in his book (below) referred to simple groups as atoms.  Marcus du Sautoy calls them building blocks.  The mathematical meaning of "simple group" is not a transparent consequence of the meanings of "simple" and "group". Du Sautoy usually writes "group of symmetries" instead of just "group", which gives you an image of what he is talking about without having to go into the abstract definition of group. So in that usage, "group" just means "collection", which is what some students continue to think well after you give the definition.  

A better, but ugly, name for "group" might be "symmetroid". It sounds technical, but that might be an advantage, not a disadvantage. "Group" obviously means any collection, as I've known since childhood. "Symmetroid" I've never heard of so maybe I'd better find out what it means.

In beginning abstract math courses my students fervently (but subconsciously) believe that they can figure out what a word means by what it means already, never mind the "definition" which causes their eyes to glaze over. You have to be really persuasive to change their minds.

Prime factorization

Matthew Watkins referred to the prime factorization of an integer as a cluster. I am not sure why Watkins doesn't like "prime factorization", which usually refers to an expression such as  $p^{n_1}_1p^{n_2}_2\ldots p^{n_k}_k$.  This (as he says) has a spurious ordering that makes you have to worry about what the uniqueness of factorization means. The prime factorization is really a multiset of primes, where the order does not matter. 

Watkins illustrates a cluster of primes as a bunch of pingpong balls stuck together with glue, so the prime factorization of 90 would be four smushed together balls marked 2, 3, 3 and 5. Below is another way of illustrating the prime factorization of 90. Yes, the random movement programming could be improved, but Mathematica seduces you into infinite playing around and I want to finish this post. (Actually, I am beginning to think I like smushed pingpong balls better. Even better would be a smushed pingpong picture that I could click on and look at it from different angles.)

Metaphors, pictures, graphs, animation

Any exposition of math should use metaphors, pictures and graphs, especially manipulable pictures (like the one above) and graphs.  This applies to expositions for math majors as well as laypeople and newbies.  Calculus and other texts nowadays have begun doing this, more with pictures than with metaphors. 

I was turned on to these ideas as far back as 1967 (date not certain) when I found an early version of David Mumford's "Red Book", which I think evolved into the book The Red Book of Varieties and Schemes.  The early version was a revelation to me both about schemes and about exposition. I have lost the early book and only looked at the published version briefly when it appeared (1999).  I remember (not necessarily correctly) that he illustrated the spectrum as a graph whose coordinates were primes, and generic points were smudges.  Writing this post has motivated me to go to the University of Minnesota math library and look at the published version again.

References

Expositions for educated non-mathematicians

Previous posts in G&G

Relevant abmath articles

Send to Kindle