Tag Archives: constraint

The intent of mathematical assertions

An assertion in mathematical writing can be a claim, a definition or a constraint.  It may be difficult to determine the intent of the author.  That is discussed briefly here.

Assertions in math texts can play many different roles.

English sentences can state facts, ask question, give commands, and other things.  The intent of an English sentence is often obvious, but sometimes it can be unexpectedly different from what is apparent in the sentence.  For example, the statement “Could you turn the TV down?” is apparently a question expecting a yes or no answer, but in fact it may be a request. (See the Wikipedia article on speech acts.) Such things are normally understood by people who know each other, but people for whom English is a foreign language or who have a different culture have difficulties with them.

There are some problems of this sort in math English and the symbolic language, too.  An assertion can have the intent of being a claim, a definition, or a constraint.

Most of the time the intent of an assertion in math is obvious. But there are conventions and special formats that newcomers to abstract math may not recognize, so they misunderstand the point of the assertion. This section takes a brief look at some of the problems.

Terminology

The way I am using the words “assertion”, “claim”, and “constraint” is not standard usage in math, logic or linguistics.


Claims

In most circumstances, you would expect that if a lecturer or author makes a math assertion, they are claiming that it is a true statement, and you would be right.

Examples
  1. “The $240$th digit of $\pi$ after the decimal point is $4$.”
  2. “If a function is differentiable, it must be continuous.”
  3. “$7\gt3$”

Remarks

  • You don’t have to know whether these statements are true or not to recognize them as claims. An incorrect claim is still a claim.
  • The assertion in (a) is a statement, in this case a false one.  If it claimed the googolth digit was $4$ you would never be able to tell whether it is true or not, but it
    still would be an assertion intended as a claim.
  • The assertion in (b) uses the standard math convention that an indefinite noun phrase (such as “a widget”) in the subject of a sentence is universally quantified (see also the article about “a” in the Glossary.) In other words, “An integer divisible by $4$ must be even” claims that any integer divisible by $4$ is even. This statement is claim, and it is true.
  • (c) is a (true) claim in the symbolic language. (Note that “$3 + 4$” is not an assertion at all, much less a claim.)


Definitions

Definitions are discussed primarily in the chapter on definitionsA definition is not the same thing as a claim. 

Example

The definition

“An integer is even if it is divisible by $2$”

makes the claim

“An
integer is even if and only if it is
divisible by $2$”

true.

(If you are surprised that the definition uses “if” but the claim uses “if and only if”, see the Glossary article on “if”.)

Unmarked definitions

Math texts sometimes define something without saying that it is a definition. Because of that, students may sometimes think a claim is a definition.

Example

Suppose that the concept of “even integer” was new to you and the book said, “A number is even if it is divisible by $4$.” Perhaps you thought that this was a definition. Later the book refers to $6$ as even and you pull your hair out wondering why. The statement is a correct claim but an incorrect definition. A good writer would write something like “Recall that a number is even if it is divisible by $2$, so that in particular it is even if it is divisible by $4$.”

On the other hand, you may think a definition is only a claim.

Example

A lecturer may say “By definition, an integer is even if it is divisible by $2$”, and you write down: “An integer is even if it is divisible by $2$”. Later, you get all panicky wondering How did she know that?? (This has happened to me.)

The confusion in the preceding example can also occur if a books says, “An integer is even if it is divisible by $2$” and you don’t know about the convention that when an author puts a word or phrase in boldface or italics it may mean that they are defining it.

A good writer always labels definitions


Constraints

Here are two assertions that contain variables.

  • “$n$ is even.”
  • “$x\gt1$”.

Such an assertion is a constraint (or a condition) if the intent is
that the assertion will hold in that part of the text (the scope of the constraint). The part of the text in which it holds is usually the immediate vicinity unless the authors explicitly says it will hold in a larger part of the text such as “this chapter” or “in the rest of the book”.

Examples
  • Sometimes the wording makes it clear that the phrase is a constraint. So a statement such as “Suppose $3x^2-2x-5\geq0$” is a constraint on the possible values of $x$.
  • The statement “Suppose $n$ is even” is an explicit requirement that $n$ be even and an implicit requirement that $n$ be an integer.
  • A condition for which you are told to find the solution(s) is a constraint. For example: “Solve the equation $3x^2-2x-5=0$”. This equation is a constraint on the variable $x$. “Solving” the equation means saying explicitly which numbers make the equation true.

Postconditions

The constraint may appear in parentheses after the assertion as a postcondition on an assertion.

Example

“$x^2\gt x\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(\text{all }x\gt1)$”

which means that if the constraint “$x\gt1$” holds, then “$x^2\gt x$” is true. In other words, for all $x\gt1$, the statement $x^2\gt x$ is true. In this statement, “$x^2\gt x$” is not a constraint, but a claim which is true when the constraint is true.

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 2.5 License.

Send to Kindle

Pattern recognition in understanding math

Abstract patterns

This post is a revision of the article on pattern recognition in abstractmath.org.

When you do math, you must recognize abstract patterns that occur in

  • Symbolic expressions
  • Geometric figures
  • Relations between different kinds of math structures.
  • Your own mental representations of mathematical objects

This happens in high school algebra and in calculus, not just in the higher levels of abstract math.

Examples

Most of these examples are revisited in the section called Laws and Constraints.

At most

For real numbers $x$ and $y$, the phrase “$x$ is at most $y$” means by definition $x\le y$. To understand this definition requires recognizing the pattern “$x$ is at most $y$” no matter what expressions occur in place of $x$ and $y$, as long as they evaluate to real numbers.

Examples

  • “$\sin x$ is at most $1$” means that $\sin x\le 1$. This happens to be true for all real $x$.
  • “$3$ is at most $7$” means that $3\leq7$. You may think that “$3$ is at most $7$” is a silly thing to say, but it nevertheless means that $3\leq7$ and so is a correct statement.
  • “$x^2+(y-1)^2$ is at most $5$” means that
    $x^2+(y-1)^2\leq5$. This is true for some pairs $(x,y)$ and false for others, so it is a constraint. It defines the disk below:

The product rule for derivatives

The product rule for differentiable functions $f$ and $g$ tells you that the derivative of $f(x)g(x)$ is \[f'(x)\,g(x)+f(x)\,g'(x)\]

Example

You recognize that the expression ${{x}^{2}}\sin x$ fits the pattern $f(x)g(x)$ with $f(x)={{x}^{2}}$ and $g(x)=\sin x$. Therefore you know that the derivative of ${{x}^{2}}\,\sin x$ is \[2x\sin x+{{x}^{2}}\cos x\]

The quadratic formula

The quadratic formula for the solutions of an equation of the form $a{{x}^{2}}+bx+c=0$ is usually given as\[r=\frac{-b\pm
\sqrt{{{b}^{2}}-4ac}}{2a}\]

Example

If you are asked for the roots of $3{{x}^{2}}-2x-1=0$, you recognize that the polynomial on the left fits the pattern $a{{x}^{2}}+bx+c$ with

  • $a\leftarrow3$ (“$a$ replaced by $3$”)
  • $b\leftarrow-2$
  • and $c\leftarrow-1$.

Then
substituting those values in the quadratic formula gives you the roots $-1/3$ and $1$.

Difficulties with the quadratic formula

A little problem

The quadratic formula is easy to use but it can still cause pattern recognition problems. Suppose you are asked to find the solutions of $3{{x}^{2}}-7=0$. Of course you can do this by simple algebra — but pretend that the first thing you thought of was using the quadratic formula.

  • Then you got upset because you have to apply it to $a{{x}^{2}}+bx+c$
  • and $3{{x}^{2}}-7$ has only two terms
  • but $a{{x}^{2}}+bx+c$ has three terms…
  • (Help!)
  • Do Not Be Anguished:
  • Write
    $3{{x}^{2}}-7$ as $3{{x}^{2}}+0\cdot x-7$, so $a=3$, $b=0$ and $c=-7$.
  • Then put those values into the quadratic formula and you get $x=\pm \sqrt{\frac{7}{3}}$.   
  • This is an example of the following useful principle:


    Write zero cleverly.

    I suspect that most people reading this would not have had the problem with $3{{x}^{2}}-7$ that I have just described. But before you get all insulted, remember:


    The thing about really easy examples is that they give you the point without getting you lost in some complicated stuff you don’t understand very well.

    A fiendisher problem

      Even college students may have trouble with the following problem (I know because I have tried it on them):

    What are the solutions of the equation $a+bx+c{{x}^{2}}=0$?

    The answer

             

    \[r=\frac{-b\pm
    \sqrt{{{b}^{2}}-4ac}}{2a}\]

    is wrong. The correct answer is

                                     \[r=\frac{-b\pm
    \sqrt{{{b}^{2}}-4ac}}{2c}\]


    When you remember a pattern with particular letters in it and an example has some of the same letters in it, make sure they match the pattern!

    The substitution rule for integration

    The chain rule says that the derivative of a function of the form $f(g(x))$ is $f'(g(x))g'(x)$. From this you get the substitution rule for finding indefinite integrals:

                                      \[\int{f'(g(x))g'(x)\,dx}=f(g(x))+C\]

    Example

    To find $\int{2x\,\cos
    ({{x}^{2}})\,dx}$, you recognize that you can take $f(x)=\sin x$and $g(x)={{x}^{2}}$ in the formula, getting \[\int{2x\,\cos ({{x}^{2}})\,dx}=\sin ({{x}^{2}})\]    Note that in the way I wrote the integral, the functions occur in the opposite order from the pattern. That kind of thing happens a lot.

    Laws and constraints

    • The statement “$(x+1)^2=x^2+2x+1$” is a pattern that is true for all numbers $x$. $3^2=2^2+2\times2+1$ and $(-2)^2=(-1)^2+2\times(-1)+1$, and so on. Such a pattern is a universal assertion, so it is a theorem. When the statement is an equation, as in this case, it is also called a law.
    • The statement “$\sin x\leq 1$” is also true for all $x$, and so is a theorem.
    • The statement “$x^2+(y-1)^2$ is at most $5$” is true for some real numbers and not others, so it is not a theorem, although it is a constraint.
    • The quadratic formula says that:
      The solutions of an equation
      of the form $a{{x}^{2}}+bx+c=0$ is
      given by\[r=\frac{-b\pm
      \sqrt{{{b}^{2}}-4ac}}{2a}\]

      This is true for all complex numbers $a$, $b$, $c$.
      The $x$ in the equation is not a free variable, but a “variable to be solved for” and does not appear in the quadratic formula. Theorems like the quadratic formula are usually called “formulas” rather than “laws”.

    • The product rule for derivatives

      The derivative of $f(x)g(x)$ is $f'(x)\,g(x)+f(x)\,g'(x)$

      is true for all differentiable functions $f$ and $g$. That means it is true for both of these choices of $f$ and $g$:

      • $f(x)=x$ and $g(x)=x\sin x$
      • $f(x)=x^2$ and $g(x)=\sin x$

      But both choices of $f$ and $g$ refer to the same function $x^2\sin x$, so if you apply the product rule in either case you should get the same answer. (Try it).

    Some bothersome types of pattern recognition

    Dependence on conventions

    Definition: A quadratic polynomial in $x$is an expression of the form $a{{x}^{2}}+bx+c$.   

    Examples

    • $-5{{x}^{2}}+32x-5$ is a quadratic polynomial: You have to recognize that it fits the pattern in the definition by writing it as $(-5){{x}^{2}}+32x+(-5)$
    • So is ${{x}^{2}}-1$: You have to recognize that it fits the definition by writing it as ${{x}^{2}}+0\cdot x+(-1)$ (I wrote zero cleverly).

    Some authors would just say, “A quadratic polynomial is an expression of the form $a{{x}^{2}}+bx+c$” leaving you to deduce from conventions on variables that it is a polynomial in $x$ instead of in $a$ (for example).

    Note also that I have deliberately not mentioned what sorts of numbers $a$, $b$, $c$ and $x$ are. The authors may assume that you know they are using real numbers.

    An expression as an instance of substitution

    One particular type of pattern recognition that comes up all the time in math is recognizing that a given expression is an instance of a substitution into a known expression.

    Example

    Students are sometimes baffled when a proof uses the fact that ${{2}^{n}}+{{2}^{n}}={{2}^{n+1}}$ for positive integers $n$. This requires the recognition of the patterns $x+x=2x$ and $2\cdot
    \,{{2}^{n}}={{2}^{n+1}}$.

    Similarly ${{3}^{n}}+{{3}^{n}}+{{3}^{n}}={{3}^{n+1}}$.

    Example

    The assertion

    \[{{x}^{2}}+{{y}^{2}}\ge 0\ \ \ \ \ \text{(1)}\]

    has as a special case

    \[(-x^2-y^2)^2+(y^2-x^2)^2\ge
    0\ \ \ \ \ \text{(2)}\]

    which involves the substitutions $x\leftarrow -{{x}^{2}}-{{y}^{2}}$ and $y\leftarrow
    {{y}^{2}}-{{x}^{2}}$.

    Remarks
    • If you see (2) in a text and the author blithely says it is “never negative”, that is because it is of the form \[{{x}^{2}}+{{y}^{2}}\ge 0\] with certain expressions substituted for $x$ and $y$. (See substitution and The only axiom for algebra.)
    • The fact that there are minus signs in (2) and that $x$ and $y$ play different roles in (1) and in (2) are red herrings. See ratchet effect and variable clash.
    • Most people with some experience in algebra would see quickly that (2) is correct by using chunking. They would visualize (2) as

      \[(\text{something})^2+(\text{anothersomething})^2\ge0\]
      This shows that in many cases


      chunking is a psychological inverse to substitution

    • Note that when you make these substitutions you have to insert appropriate parentheses (more here). After you make the substitution, the expression of course can be simplified a whole bunch, to

      \[2({{x}^{4}}+{{y}^{4}})\ge0\]

    • A common cause of error in doing this (a mistake I make sometimes) is to try to substitute and simplify at the same time. If the situation is complicated, it is best to

      substitute as literally as possible and then simplify

    Integration by Parts

    The rule for integration by parts says that

                             \[\int{f(x)\,g'(x)\,dx=f(x)\,g(x)-\int{f'(x)\,g(x)\,dx}}\]

    Suppose you need to find $\int{\log x\,dx}$.(In abstractmath.org, “log” means ${{\log }_{e}}$).  Then we can recognize this integral as having the pattern for the left side of the parts formula with $f(x)=1$ and $g(x)=\log \,x$. Therefore

    \[\int{\log x\,dx=x\log x-\int{\frac{1}{x}dx=x\log \,x-x+c}}\]

    How on earth did I think to recognize $\log x$ as $1\cdot \log x$??  
    Well, to tell the truth because some nerdy guy (perhaps I should say some other nerdy guy) clued me in when I was taking freshman calculus. Since then I have used this device lots of times without someone telling me — but not the first time.

    This is an example of another really useful principle:


    Write $1$ cleverly.

    Two different substitutions give the same expression

    Some proofs involve recognizing that a symbolic expression or figure fits a pattern in two different ways. This is illustrated by the next two examples. (See also the remark about the product rule above.) I have seen students flummoxed by Example ID, and Example ISO is a proof that is supposed to have flummoxed medieval geometry students.

    Example ID

    Definition: In a set with an associative binary operation and an identity element $e$, an element $y$ is the inverse of an element $x$ if

    \[xy=e\ \ \ \ \text{and}\ \ \ \ yx=e \ \ \ \ (1)\]

    In this situation, it is easy to see that $x$ has only one inverse: If $xy=e$ and $xz=e$ and $yx=e$ and $zx=e$, then \[y=ey=(zx)y=z(xy)=ze=z\]

    Theorem: ${{({{x}^{-1}})}^{-1}}=x$.

    Proof: I am given that ${{x}^{-1}}$ is the inverse of $x$, By definition, this means that

    \[x{{x}^{-1}}=e\ \ \ \text{and}\ \ \ {{x}^{-1}}x=e \ \ \ \ (2)\]

    To prove the theorem, I must show that $x$ is the inverse of ${{x}^{-1}}$. Because $x^{-1}$ has only one inverse, all we have to do is prove that

    \[{{x}^{-1}}x=e\ \ \ \text{and}\ \ \ x{{x}^{-1}}=e\ \ \ \ (3)\]  

    But (2) and (3) are equivalent! (“And” is commutative.)

    Example ISO

    This sort of double substitution occurs in geometry, too.

    Theorem: If a triangle has two equal angles, then it has two equal sides.

    Proof: In the figure, assume $\angle ABC=\angle ACB$. Then triangle $ABC$ is congruent to triangle $ACB$ since the sides $BC$ and $CB$ are equal (they are the same line segment!) and the adjoining angles are equal by hypothesis.

    The point is that although triangles $ABC$ and $ACB$ are the same triangle, and sides $BC$ and $CB$ are the same line segment, the proof involves recognizing them as geometric figures in two different ways.

    This proof (not Euclid’s origi­nal proof) is hundreds of years old and is called the pons asinorum (bridge of donkeys). It became famous as the first theorem in Euclid’s books that many medi­eval stu­dents could not under­stand. I con­jecture that the name comes from the fact that the triangle as drawn here resembles an ancient arched bridge. These days, isos­ce­les tri­angles are usually drawn taller than they are wide.

    Technical problems in carrying out pattern matching

    Parentheses

    In matching a pattern you may have to insert parentheses. For example, if you substitute $x+1$ for $a$, $2y$ for
    $b$ and $4$ for $c$ in the expression \[{{a}^{2}}+{{b}^{2}}={{c}^{2}}\] you get \[{{(x+1)}^{2}}+4{{y}^{2}}=16\]
    If you did the substitution literally without editing the expression so that it had the correct meaning, you would get \[x+{{1}^{2}}+2{{y}^{2}}={{4}^{2}}\] which is not the result of performing the substitution in the expression ${{a}^{2}}+{{b}^{2}}={{c}^{2}}$.   

    Order switching

    You can easily get confused if the patterns involve a switch in the order of the variables.

    Notation for integer division

    • For integers $m$ and $n$, the phrase “$m$ divides $n$” means there is an integer $q$ for which $n=qm$.
    • In number theory (which in spite of its name means the theory of positive integers) the vertical bar is used to denote integer division. So $3|6$ because $6=2\times 3$ ($q$ is $2$ in this case). But “$3|7$” is false because there is no integer $q$ for which $7=q\times 3$.
    • An equivalent definition of division says that $m|n$ if and only if $n/m$ is an integer. Note that $6/3=2$, an integer, but $7/3$ is not an integer.
    • Now look at those expressions:
    • “$m|n$” means that there is an integer $q$ for which $n=qm$.In these two expressions, $m$ and $n$ occur in opposite order.
    • “$m|n$” is true only if $n/m$ is an integer. Again, they are in opposite order. Another way of writing $n/m$ is $\frac{n}{m}$. When math people pronounce “$\frac{n}{m}$” they usually say, “$n$ over $m$” using the same order.
  • I taught these notation in courses for computer engineering and math majors for years. Some of the students stayed hopelessly confused through several lectures and lost points repeatedly on homework and exams by getting these symbols wrong.
  • The problem was not helped by the fact that “$|$” and “$/$” are similar but have very different syntax:

    Math notation gives you no clue which symbols are operators (used to form expressions) and which are verbs (used to form assertions).

  • A majority of the students didn’t have so much trouble with this kind of syntax. I have noticed that many people have no sense of syntax and other people have good intuitive understanding of syntax. I suspect the second type of people find learning foreign languages easy.
  • Many of the articles in the references below concern syntax.
  • References

    Creative Commons License

    This work is licensed under a Creative Commons Attribution-ShareAlike 2.5 License.


    Send to Kindle

    Rigorous proofs

    Rich and rigorous

    When we try to understand a math statement, we visualize what the statement says using metaphors, images and kinetic feelings to feel how it is true, or to suggest that the statement is not true.

    If we are convinced that it is true, we may then want to prove it. Doing that involves pitching out all the lovely pictures and metaphors and gestures and treating the mathematical objects involved in the proof as static and inert. “Static” means the object does not change. “Inert” means that it does not affect anything else. I am saying how we think about math objects for the purpose of rigorous proof. I am not saying anything about “what math objects are”.

    In this post I give a detailed example of a proof of the rigorous sort.

    Example

    Informal statement

    First, I’ll describe this example in typical spoken mathematical English. Suppose you suspect that the following statement is true:

    Claim: Let $f(x)$ be a differentiable function with $f'(a)=0$.
    Going from left to right, suppose the graph of $f(x)$ goes UP before $x$ reaches $a$ and then DOWN for $x$ to the right of $a$
    Then $a$ has to be a local maximum of the function.

    This claim is written in informal math English. Mathematicians talk like that a lot. In this example they will probably wave their hands around in swoops.

    The language used is an attempt to get a feeling for the graph going up to $(a,f(a))$ and then falling away from it. It uses two different metaphors for $x\lt a$ and $x\gt a$. I suspect that most of us would want to clean that up a bit even in informal writing.

    A more formal statement

    Theorem: Let $f$ be a real valued differentiable function defined on an open interval $R$. Let $a$ be a number in $R$ for which $f'(a)=0$. Suppose that for all $x\in R$, $f$ increases for $x\lt a$ and decreases for $x\gt a$. Then $f(a)$ is a maximum of $f$ in $R$.

    Proof

    1. By definition of derivative, \[\lim_{x\to a}\frac{f(x)-f(a)}{x-a}=0.\]
    2. By definition of limit, then for any positive $\epsilon$ there is a positive $\delta$ for which if $0\lt|x-a|\lt\delta$ then \[\left|\frac{f(x)-f(a)}{x-a}\right|\lt\epsilon.\]
    3. By requiring that $\delta\lt 1$, it follows from (2) that for any positive $\epsilon$, there is a positive $\delta$ for which if $0\lt|x-a|\lt\delta$, then $|f(x)-f(a)|\lt\epsilon$.
    4. “$f$ increases for $x\lt a$” means that if $x$ and $y$ are numbers in $R$ and $x\lt y\lt a$, then $f(x)\lt f(y)$.
    5. “$f$ decreases for $x\gt a$” means that if $x$ and $y$ are numbers in $R$ and $a\lt x\lt y$, then $f(x)\gt f(y)$.
    6. “$f(a)$ is a maximum of $f$ in $R$” means that for $x\in R$, if $x\neq a$, then $f(x)\lt f(a)$.
    7. Suppose that $x\in R$ and $x\lt a$. (The case that $x\gt a$ has a symmetric proof.)
    8. Given $\epsilon\gt0$ with $\delta$ as given by (3), choose $y\in R$ such that $x\lt y\lt a$ and $|f(y)-f(a)|\lt\epsilon$.
    9. By (4), $f(x)\lt f(y)$. So by (8), \[\begin{align*}
      f(x)-f(a)&=
      f(x)-f(y)+f(y)-f(a)\\ &\lt f(y)-f(a)\\ &\leq|f(y)-f(a)|\lt\epsilon\end{align*}\]
      so that $f(x)\lt f(a)+\epsilon$. By inserting “$-f(y)+f(y)$” into the second formula, I am “adding zero cleverly”, an example of pulling a rabbit out of a hat. Students hate that. But you have to live with it; as long as the statements following are correct, it makes a valid proof. Rabbit-out-of-a-hat doesn’t make a proof wrong, but it does make you wonder how the author thought of it. Live with it.
    10. Since (9) is true for all positive $\epsilon$, it follows that $f(x)\leq f(a)$.
    11. By the same argument as that leading up to (10), $f(\frac{x-a}{2})\leq f(a)$.
    12. Since $f(x)\lt f(\frac{x-a}{2})$, it follows that $f(x)\lt f(a)$ as required.

    About the proof

    This proof is intended to be a typical “rigorous” proof. I suspect it tends to be more rigorous than most mathematicians would find necessary,

    Extensionality

    The point about “rigor”, about insisting that the objects be static and inert, is that this causes symbols and expression to retain the same meaning throughout the text. This is one aspect of extensionality.

    Of course, some of the symbols denote variables, or variable objects. This does not mean they are “varying”. I am taking this point of view: A variable refers to a math object but you don’t know what it is. Constraints such as $x\lt a$ rule out some possible values but don’t generally tell you exactly what $x$ is. There is more about this in Variable Objects

    The idea in (6), for example, is that $y$ denotes a real number. You don’t know which number it is, but you do know some facts about it: $x\lt y\lt a$, $|f(y)\lt f(a)|\lt\epsilon$ and so on. Similarly you don’t know what function $f$ is, but you do know some facts about it: It is differentiable, for example, and $f'(a)=0$.

    My statement that the variables aren’t “varying” means specifically that each unbound occurrence of the variable refers to the same value as any other occurrence, unless some intervening remark changes its meaning. For example, the references to $x$ in (7) through (10) refer to the same value it has in (6), and (10), in particular, constitutes a statement that the claim about $x$ is correct.

    Checkability

    The elimination of metaphors that lets the proof achieve rigor is part of a plan in the back of the mind of at least some mathematicians who write proofs. The idea is that the proof be totally checkable:

    • Every statement in the proof has a semantics, a meaning, that is invariant (given the remark about variables above).
    • Each statement is justified by some of the previous statements. This justification is given by two systems that the reader is supposed to understand.
    • One system is the rules of symbol manipulation that are applied to the symbolic expressions, ordinary algebra, and higher-level manipulations used in particular branches of math.
    • The other system consists of the rules of logical reasoning that justify the claims that each statement follows logically from preceding ones.
    • These two systems are really branches of one system, the entire system of math computation and reasoning. It can be obscure which system is being used in a particular step.

    Suppression of reasons

    The logical and symbolic-manipulation reasons justifying the deductions may not be made completely explicit. In fact, for many steps they may not be mentioned at all, and for others, one or two phrases may be used to give a hint. This is standard practice in writing “rigorous” proofs. That is a descriptive statement, made without criticism. Giving all the reasons is essentially impossible without a computer.

    I am aware that some work has been done to write proof checkers that can read a theorem like the one we are considering, stated in natural language, and correctly implement the semantics I have described in this list. I don’t know of any references to such work and would appreciate information about it.

    Suppression of reasons makes it difficult to mechanically check a proof written in this standard “rigorous” writing style. Basically, you must be at at least the graduate student level to be able to make sense of what is said, and even experienced math research people find it difficult to read a paper in a very different field. Writing the proof so that it can be checked by a proof checker requires understanding of the same sort, and it typically makes the proof much longer.

    One hopeful new approach is to write the proofs using homotopy type theory. The pioneers in that field report that the proofs don’t expand nearly as much as is required by first order logic.

    Examples of suppression

    Here are many examples of suppression in the $\epsilon$-$\delta$ proof above. This is intended to raise your consciousness concerning how nearly opaque writing in math research is to anyone but the cognoscenti.

    • The first sentence of the theorem names $R$ and $f$ and puts constraints on them that can be used to justify statements in the proof. The naming of $R$ and $f$ requires that every occurrence of $R$ in the proof refers to the same mathematical object, and similarly for $f$.

    Remark: The savvy reader “knows” the facts stated in (a), possibly entirely subconsciously. For many of us there is no conscious thought of constraints and permanence of naming. My goal is to convince those who teach beginning abstract math course to become conscious of these phenomena. This remark applies to all the following items as well.

    • The second sentence gives $a$ a specific meaning that will be maintained throughout the proof. It also puts constraints on $a$ and an additional constraint on $f$.
    • The third sentence gives a constraint on $R$, $f$ and $a$. It does not give a constraint on $x$, which is a bound variable. Nor does it name $x$ as a specific number with the same meaning in the rest of the proof. (That happens later).
    • The fact that the first three sentences impose constraints on various objects is signaled by the fact that the sentences are introduced by “let” and “suppose”. The savvy reader knows this.
    • The fourth sentence announces that “$f(a)$ is a maximum of $f$ in $R$” is a consequence of the constraints imposed by the preceding three sentences. (In other words, it follows from the context.) This is signaled by the word “then”.
    • The fact that the paragraph is labeled “Theorem” informs us that the fourth sentence is therefore a statement of what is to be proved, and that every constraint imposed by the first three sentences of the Theorem may be used in the proof.
    • In the proof, statements (1), (4), (5) and (6) rewrite the statements in the theorem according to the definitions of the words involved, namely “derivative: “increases”, “decreases” and “maximum”. Rewriting statements according to the definitions of the words involved is a fundamental method for starting a proof.
    • (2) follows from (1) by rewriting using the definition of “limit”. Note that pattern-matching against the definition of limit requires understanding that there is a zero inside the absolute value signs that is not written down. Could a computer proof-checker handle that?
    • (3) follows from (2). The reader or proof-checker must:
      • Know that it is acceptable to put an upper bound on $\delta$ in the definition of limit.
      • Notice that you can move $|x-a|$ out of the denominator because $x\neq a$ by (2).
    • The conclusion in (6) that we much show that $f(x)\lt f(a)$ is now the statement we must prove.

    Remark: In the following items, I mention the context of the proof. I am using the word informally here. It is used in some forms of formal logic with a related but more precise meaning. The context consists of the variables you must hold in your head as you read each part of the proof, along with their current constraints. “Current” means the “now” that you are in when considering the step of the proof you are reading right now. I give some references at the end of the post.

    • At the point between (6) and (7), our context consists of $a$, $R$ and $f$ all subject to some constraints. $x$ is not yet in the context of our proof because its previous occurrences in the theorems and in (1) through (6) have been bound, mostly by an unexpressed universal quantifier. Now we are to think of $x$ as a specific number bound by some constraints.
    • The statement in (7) that the case $x\gt a$ as a symmetric proof is a much higher-level claim than the other steps in this proof, even though in fact it is not very high level compared to statements such as “An application of Serre’s spectral sequence shows$\ldots$”. Most mathematicians with even a little experience will read this statement and accept it in the confidence that they will know how to swap “$\lt$” and “$\gt$” in the proof in the correct way (which is a bit picky) to provide a dual proof. Some students might write out the dual proof to make sure they understand it (more likely because writing it out was a class assignment). I await the day that an automated proof checker can handle a statement like this.
    • (8) introduces three new math objects $\epsilon$, $\delta$ and $y$ subject to several constraints. The symbols occur earlier but they are all bound. $\epsilon$ will be fixed in our context from now until (10). The others don’t appear later.
    • (9) consists of several steps of algebraic computation. A cognoscent (I am tired of writing “savvy”) reader first looks at the computation as a whole and notices that it deduces that $|f(x)-f(a)|\lt\epsilon$, which is almost what is to be proved. This helps the reader understand the reason for the calculation. No mention whatever is made in this step of all this stuff that should go through your mind (or the proof-checker’s “mind”).
    • The computations in (9) are are basic algebra not explained step by step, except that the remark that $f(x)\lt f(y)$ explains how you get $f(x)-f(y)+f(y)-f(a) \lt f(y)-f(a)$.
    • (10) banishes $\epsilon$ from the context by universally quantifying over it. That $f(x)\leq f(a)$ follows by the garbage-dump-in-Star-Wars trick that often baffles first year analysis students: Since for all positive $\epsilon$, $f(x)\lt f(a)+\epsilon$, then $f(x)\leq f(a)$. (See also Terry Tao’s article in Tricks Wiki.)
    • (11) “By the same argument as leading up to (10)” puts some demands on the reader, who has to discover that you have to go back to (7) and do the following steps with a new context using a value of $x$ that is halfway closer to $a$ than the “old” $x$ was. This means in particular that the choice of $\frac{x-2}{2}$ is unnecessarily specific. But it works.
    • (12) suppresses the reference to (11).
    • References

      I have written extensively on these topics. Here are some links.

      Rich-rigorous bifurcation in math thinking

    The symbolic language

    Math English and the language of proofs

    Proofs and context

    Send to Kindle