Tag Archives: cognitive dissonance

Very early difficulties II

Very early difficulties II

This is the second part of a series of posts about certain difficulties math students have in the very early stages of studying abstract math. The first post, Very early difficulties in studying abstract math, gives some background to the subject and discusses one particular difficulty: Some students do not know that it is worthwhile to try starting a proof by rewriting what is to be proved using the definitions of the terms involved.

Math StackExchange

The website Math StackExchange is open to any questions about math, even very easy ones. It is in contrast with Math OverFlow, which is aimed at professional mathematicians asking questions in their own field.

Math SE contains many examples of the early difficulties discussed in this series of posts, and I recommend to math ed people (not just RUME people, since some abstract math occurs in advanced high school courses) that they might consider reading through questions on Math SE for examples of misunderstanding students have.

There are two caveats:

  • Most questions on Math SE are at a high enough level that they don’t really concern these early difficulties.
  • Many of the questions are so confused that it is hard to pinpoint what is causing the difficulty that the questioner has.

Connotations of English words

The terms(s) defined in a definition are often given ordinary English words as names, and the beginner automatically associates the connotations of the meaning of the English word with the objects defined in the definition.

Infinite cardinals

If $A$ if a finite set, the cardinality of $A$ is simply a natural number (including $0$). If $A$ is a proper subset of another set $B$, then the cardinality of $A$ is strictly less than the cardinality of $B$.

In the nineteenth century, mathematicians extended the definition of cardinality for infinite sets, and for the most part cardinality has the same behavior as for finite sets. For example, the cardinal numbers are well-ordered. However, for infinite sets it is possible for a set and a proper subset of the set to have the same cardinality. For example, the cardinality of the set of natural numbers is the same as the cardinality of the set of rational numbers. This phenomenon causes major cognitive dissonance.

Question 1331680 on Math Stack Exchange shows an example of this confusion. I have also discussed the problem with cardinality in the abstractmath.org section Cardinality.

Morphism in category theory

The concept of category is defined by saying there is a bunch of objects called objects (sorry bout that) and a bunch of objects called morphisms, subject to certain axioms. One requirement is that there are functions from morphisms to objects choosing a “domain” and a “codomain” of each morphism. This is spelled out in Category Theory in Wikibooks, and in any other book on category theory.

The concepts of morphism, domain and codomain in a category are therefore defined by abstract definitions, which means that any property of morphisms and their domains and codomains that is true in every category must follow from the axioms. However, the word “morphism” and the talk about domains and codomains naturally suggests to many students that a morphism must be a function, so they immediately and incorrectly expect to evaluate it at an element of its domain, or to treat it as a function in other ways.

Example

If $\mathcal{C}$ is a category, its opposite category $\mathcal{C}^{op}$ is defined this way:

  • The objects of $\mathcal{C}^{op}$ are the objects of $\mathcal{C}$.
  • A morphism $f:X\to Y$ of $\mathcal{C}^{op}$ is a morphism from $Y$ to $X$ of $\mathcal{C}$ (swap the domain and codomain).

In Question 980933 on Math SE, the questioner is saying (among other things) that in $\text{Set}^{op}$, this would imply that there has to be a morphism from a nonempty set to the empty set. This of course is true, but the questioner is worried that you can’t have a function from a nonempty set to the empty set. That is also true, but what it implies is that in $\text{Set}^{op}$, the morphism from $\{1,2,3\}$ to the empty set is not a function from $\{1,2,3\}$ to the empty set. The morphism exists, but it is not a function. This does not any any sense make the definition of $\text{Set}^{op}$ incorrect.

Student confusion like this tends to make the teacher want to have a one foot by six foot billboard in his classroom saying

A MORPHISM DOESN’T HAVE TO BE A FUNCTION!

However, even that statement causes confusion. The questioner who asked Question 1594658 essentially responded to the statement in purple prose above by assuming a morphism that is “not a function” must have two distinct values at some input!

That questioner is still allowing the connotations of the word “morphism” to lead them to assume something that the definition of category does not give: that the morphism can evaluate elements of the domain to give elements of the codomain.

So we need a more elaborate poster in the classroom:

The definition of “category” makes no requirement
that an object has elements
or that morphisms evaluate elements.

As was remarked long long ago, category theory is pointless.

English words implementing logic

There are lots of questions about logic that show that students really do not think that the definition of some particular logical construction can possibly be correct. That is why in the abstractmath.org chapter on definitions I inserted this purple prose:

A definition is a totalitarian dictator.

It is often the case that you can explain why the definition is worded the way it is, and of course when you can you should. But it is also true that the student has to grovel and obey the definition no matter how weird they think it is.

Formula and term

In logic you learn that a formula is a statement with variables in it, for example “$\exists x((x+5)^3\gt2)$”. The expression “$(x+5)^3$” is not a formula because it is not a statement; it is a “term”. But in English, $H_2O$ is a formula, the formula for water. As a result, some students have a remarkably difficult time understanding the difference between “term” and “formula”. I think that is because those students don’t really believe that the definition must be taken seriously.

Exclusive or

Question 804250 in MathSE says:

“Consider $P$ and $Q$. Let $P+Q$ denote exclusive or. Then if $P$ and $Q$ are both true or are both false then $P+Q$ is false. If one of them is true and one of them is false then $P+Q$ is true. By exclusive or I mean $P$ or $Q$ but not both. I have been trying to figure out why the truth table is the way it is. For example if $P$ is true and $Q$ is true then no matter what would it be true?”

I believe that the questioner is really confused by the plus sign: $P+Q$ ought to be true if $P$ and $Q$ are both true because that’s what the plus sign ought to mean.

Yes, I know this is about a symbol instead of an English word, but I think the difficulty has the same dynamics as the English-word examples I have given.

If I have understood this difficulty correctly, it is similar to the students who want to know why $1$ is not a prime number. In that case, there is a good explanation.

Only if

The phrase “only if” simply does not mean the same thing in math as it does in English. In Question 17562 in MathSE, a reader asks the question, why does “$P$ only if $Q$” mean the same as “if $P$ then $Q$” instead of “if $Q$ then $P$”?

Many answerers wasted a lot of time trying to convince us that “$P$ only if $Q$” mean the same as “if $P$ then $Q$” in ordinary English, when in fact it does not. That’s because in English, clauses involving “if” usually connote causation, which does not happen in math English.

Consider these two pairs of examples.

  1. “I take my umbrella only if it is raining.”
  2. “If I take my umbrella, then it is raining.”
  3. “I flip that switch only if a light comes on.”
  4. “If I flip that switch, a light comes on.”

The average non-mathematical English speaker will easily believe that (1) and (4) are true, but will balk and (2) and (3). To me, (3) means that the light coming on makes me flip the switch. (2) is more problematical, but it does (to me) have a feeling of causation going the wrong way. It is this difference that causes students to balk at the equivalence in math of “$P$ only if $Q$” and “If $P$, then $Q$”. In math, there is no such thing as causation, and the truth tables for implication force us to live with the fact that these two sentences mean the same thing.

Henning Makholm’ answer to Question 17562 begins this way: “I don’t think there’s really anything to understand here. One simply has to learn as a fact that in mathematics jargon the words ‘only if’ invariably encode that particular meaning. It is not really forced by the everyday meanings of ‘only’ and’ if’ in isolation; it’s just how it is.” That is the best way to answer the question. (Other answerers besides Makholm said something similar.)

I have also discussed this difficulty (and other difficulties with logic) in the abmath section on “only if“.

References

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 2.5 License.

Send to Kindle

Math majors attacked by cognitive dissonance

In some situations you may have conflicting information from different sources about a subject.   The resulting confusion in your thinking is called cognitive dissonance.

It may happen that a person suffering cognitive dissonance suppresses one of the ways of understanding in order to resolve the conflict.  For example, at a certain stage in learning English, you (small child or non-native-English speaker) may learn a rule that the past tense is made from the present form by adding “-ed”. So you say “bringed” instead of “brought” even though you may have heard people use “brought” many times.  You have suppressed the evidence in favor of the rule.

Some of the ways cognitive dissonance can affect learning math are discussed here

Metaphorical contamination

We think about math objects using metaphors, as we do with most concepts that are not totally concrete.  The metaphors are imperfect, suggesting facts about the objects that may not follow from the definition. This is discussed at length in the section on images and metaphors here.

The real line

Mathematicians think of the real numbers as constituting a line infinitely long in both directions, with each number as a point on the line. But this does not mean that you can think of the line as a row of points. Between any two points there are uncountably many other points. See density of the reals.

Infinite math objects

One of the most intransigent examples of metaphorical contamination occurs when students think about countably infinite sets. Their metaphor is that a sequence such as the set of natural numbers $\{0,1,2,3,4,\ldots\}$ “goes on forever but never ends”. The metaphor mathematicians have in mind is quite different: The natural numbers constitute the set that contains every natural number right now.

Example

An excruciating example of this is the true statement
$.999\ldots=1.0$.” The notion that it can’t be true comes from thinking of “$0.999\ldots$” as consisting of the list of numbers \[0.9,0.99,0.999,0.9999,0.99999,\ldots\] which the student may say “gets closer and closer to $1.0$ but never gets there”.

Now consider the way a mathematician thinks: The numbers are all already there, and they make a set.

The proof that $.999\ldots=1.0$ has several steps. In the list below, I have inserted some remarks in red that indicate areas of abstract math that beginning students have trouble with.

  1. The elements of an infinite set are all in it at once. This is the way mathematicians think about infinite sets.
  2. By definition, an infinite decimal expansion represents the unique real number that is a limit point of its set of truncations.
  3. The problem that occurs with the word “definition” in this case is that a definition appears to be a dictatorial act. The student needs to know why you made this definition. This is not a stupid request. The act can be justified by the way the definition gets along with the algebraic and topological characteristic of the real numbers.

  4. It follows from $\epsilon-\delta$ machinations that the limit of the sequence $0.9,0.99,0.999,0.9999,0.99999,\ldots$ is $1.0$
  5. That means “$0.999\ldots$” represents $1.0$. (Enclosing a mathematical expression in quotes turns it into a string of characters.)
  6. The statement “$A$” represents $B$ is equivalent to the statement $A=B$. (Have you ever heard a teacher point this out?)
  7. It follows that that $0.999\ldots=1.0$.

Each one of these steps should be made explicit. Even the Wikipedia article, which is regarded as a well written document, doesn’t make all of the points explicit.

Semantic contamination

Many math objects have names that are ordinary English words. 
(See names.) So the person learning about them is faced with two inputs:

  • The definition of the word as a math object.
  • The meaning and connotations of the word in English.

It is easy and natural to suppress the information given by the definition (or part of it) and rely only on the English meaning. But math does not work that way:

If another source of understanding contradicts the definition
THE DEFINITION WINS.

“Cardinality”

The connotations of a name may fit the concept in some ways and not others. Infinite cardinal numbers are a notorious example of this: there are some ways in which they are like numbers and other in which they are not. 

For a finite set, the cardinality of the set is the number of elements in the set. Long ago, mathematicians started talking about the cardinality of an infinite set. They worked out a lot of facts about that, for example:

  • The cardinality of the set of natural numbers is the same as the cardinality of the set of rational numbers.
  • The cardinality of the number of points on the real line is the same as the cardinality of points in the real plane.

The teacher may even say that there are just as many points on the real line as in the real points. And know-it-all math majors will say that to their friends.

Many students will find that totally bizarre. Essentially, what has happened is that the math dictators have taken the phrase “cardinality” to mean what it usually means for finite sets and extend it to infinite sets by using a perfectly consistent (and useful) definition of “cardinality” which has very different properties from the finite case.

That causes a perfect storm of cognitive dissonance.

Math majors must learn to get used to situations like this; they occur in all branches of math. But it is bad behavior to use the phrase “the same number of elements” to non-mathematicians. Indeed, I don’t think you should use the word cardinality in that setting either: you should refer to a “one-to-one correspondence” instead and admit up front that the existence of such a correspondence is quite amazing.

“Series”

Let’s look at the word “series”in more detail. In ordinary English, a series is a bunch of things, one after the other.

  • The World Series is a series of up to seven games, coming one after another in time.
  • A series of books is not just a bunch of books, but a bunch of books in order.
  • In the case of the Harry Potter series the books are meant to be read in order.
  • A publisher might publish a series of books on science, named Physics, Chemistry,
    Astronomy, Biology,
    and so on, that are not meant to be read in order, but the publisher will still list them in order.(What else could they do? See Representing and thinking about sets.)

Infinite series in math

In mathematics an infinite series is an object expressed like this:

\[\sum\limits_{k=1}^{\infty
}{{{a}_{k}}}\]

where the ${{a}_{k}}$ are numbers. It has partial sums

\[\sum\limits_{k=1}^{n}{{{a}_{k}}}\]

For example, if ${{a}_{k}}$ is defined to be $1/{{k}^{2}}$ for positive integers $k$, then

\[\sum\limits_{k=1}^{6}{{{a}_{k}}}=1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\frac{1}{25}+\frac{1}{36}=\frac{\text{5369}}{\text{3600}}=\text{
about }1.49\]

This infinite series converges to $\zeta (2)$, which is about $1.65$. (This is not obvious. See the Zeta-function article in Wikipedia.) So this “infinite series” is really an infinite sum. It does not fit the image given by the English word “series”. The English meaning contaminates the mathematical meaning. But the definition wins.

The mathematical word that corresponds to the usual meaning of “series” is “sequence”. For example, $a_k:=1/{{k}^{2}}$ is the infinite sequence $1,\frac{1}{4},\frac{1}{9},\frac{1}{16}\ldots$ It is not an infinite series.

“Only if”

“Only if” is also discussed from a more technical point of view in the article on conditional assertions.

In math English, sentences of the form $P$ only if $Q$” mean exactly the same thing as “If $P$ then $Q$”. The phrase “only if” is rarely used this way in ordinary English discourse.

Sentences of the form “$P$ only if $Q$” about ordinary everyday things generally do not mean the same thing as “If $P$ then $Q$”. That is because in such situations there are considerations of time and causation that do not come up with mathematical objects. Consider “If it is raining, I will carry an umbrella” (seeing the rain will cause me to carry the umbrella) and “It is raining only if I carry an umbrella” (which sounds like my carrying an umbrella will cause it to rain).   When “$P$ only if $Q$” is about math objects,
there is no question of time and causation because math objects are inert and unchanging.

 Students sometimes flatly refuse to believe me when I tell them about the mathematical meaning of “only if”.  This is a classic example of semantic contamination.  Two sources of information appear to contradict each other, in this case (1) the professor and (2) a lifetime of intimate experience with the English language.  The information from one of these sources must be rejected or suppressed. It is hardly surprising that many students prefer to suppress the professor’s apparently unnatural and usually unmotivated claims.

These words also cause severe cognitive dissonance

  • “If” causes notorious difficulties for beginners and even later. They are discussed in abmath here and here.
  • A, an
    and the implicitly signal the universal quantifier in certain math usages. They cause a good bit of trouble in the early days of some students.

The following cause more minor cognitive dissonance.

References for semantic contamination

Besides the examples given above, you can find many others in these two works:

  • Pimm, D. (1987), Speaking Mathematically: Communications in Mathematics Classrooms.  Routledge & Kegan Paul.
  • Hersh, R. (1997),”Math lingo vs. plain English: Double entendre”. American Mathematical Monthly, vol 104,pages 48-51.
Send to Kindle

Skills needed for learning languages and math

Learning a language involves a variety of skills, and so does learning math. Some skills are apparently needed for both, but others are distinct.

Learning languages and learning math

Some years ago I sat in on a second year college Spanish class. Most of the other students were ages 18-24. The students showed a wide spectrum of ability.

  • Some were quite fluent and conversed easily. Others struggled to put a sentence together.
  • Some had trouble with basic grammar, for example adjective-noun agreement (number and gender). I would not have thought second year students would do that. Some also had trouble with verbs. Spanish verbs are generally difficult, but second year students shouldn’t have trouble with using “canta” with singular subjects and “cantan” with plural ones.
  • Some had trouble reading aloud, stumbling over pronunciation, such putting the accent in the right place in real time and pronouncing some letters correctly (“ll”, “e”, intervocalic “s”). The rules for accent and pronouncing letters are very easy in Spanish, and I was surprised that second year students would have difficulty with them. But the speech of most of them sounded good to me.

I can read Spanish pretty well, but have had very little practice speaking or writing it. I comprehend some of what they say on Univision (soap operas are particularly easy, but I still miss more than half of it), but then I am hard of hearing. I used to have a reasonable ability to speak and understand street German; judging from experience I think it would come back rapidly if we went to live in a German-speaking city again. I can easily read math papers written in Spanish or in German, but I couldn’t come close to giving a math lecture in either language.

Some find learning rules of pronunciation that are different from English very hard, like the Spanish students I mentioned above. I know that some people can’t keep “ei” and “ie” straight in German, and some Russian students find it hard to get used to the Cyrillic alphabet. I find that part of language learning easy. I also find learning grammar and using it in real time fairly easy. I have more difficulty remembering vocabulary.

Learning the new sounds of a language is an entirely different problem from learning the rules of pronunciation.

Mathematical ability

Some difficulties that students have with the symbolic language of math [1] are probably the same kind of difficulties that language students have with learning another language.

When I have taught elementary logic, I usually have a scattering of students who can’t keep the symbols {\land} and {\lor} separate. (See Note [a].) Some even have the same trouble with intersection and union of sets. This is sort of like differentiating “ie” and “ei” in German, except that the latter distinction runs into cognitive dissonance [2] caused by the usual English pronunciation.

Of course, both language students and math students have immense problems with cognitive dissonance in areas other than symbol-learning. For example, many technical words in math have meanings different from ordinary English usage, such as “if”, “group”, and “category”. Language students have difficulties with “false friends” such as “Gift”, which is the German word for “poison”, and very common words such as prepositions, which can have several different translations into English depending on context — and many prepositions in other European languages look like English prepositions. (Note [b]).

On the other hand, some types of mathematical learning seem to involve problems language students don’t run into.

Substitution, for example, appears to me to cause conceptual difficulties that are not like anything in learning language. But I would like to hear examples to the contrary.

If {f(x) = x^2+3x+1}, then {f(x+1)= (x+1)^2+3(x+1)+1}. Is there anything like this in natural languages? And simplifying this to {x^4+5 x^2+5} is not like anything in natural language either — is it?

Is there anything in learning natural languages that is like thinking of an element of a set? Or like the two-level quantification involved in understanding the definition of continuity?

Is there anything in learning math that involves the same kind of difficulty as learning to pronounce a new sound in another language? (Well, making a speech sound involves moving parts of your mouth in three dimensions, and some people find visualizing 3D shapes difficult. But that seems like a stretch to me).

A proposal for investigation

Students show a wide variety of conceptual skills. Some skills seem to be required both in learning mathematics and in learning a foreign language. Others are different. Also, there is a difference between learning school math and learning abstract math at the college level (Note [c]).

TOPIC FOR RESEARCH

  • Identify the types of concept formation that learning a foreign language and learning math have in common.
  • Determine if “being good at languages” and “being good at mathematics” are correlated at the high school level.
  • Ditto for college-level abstract math.

Undoubtedly math teachers and language teachers have written about certain specific issues of the sort I have discussed, but I think we need a systematic comparative investigation of skills involved in the tasks of learning languages and learning math.

I have made proposals for research concerning various other questions with math ed, particularly in connection with linguistics. I will install a new topic “Proposals for research” in my “List of categories” (on the left side of the screen under “Recent posts”) and mark this and other articles that contain such proposals.

Notes

[a]. That is why, in the mathematical reasoning sections of abmath, for example [3], I use the usual English wordings of mathematical assertions instead of systematically using logical symbolism. For many students, introducing symbols and then immediately using them to talk about the subtleties of meaning and usage puts a difficult burden on some of the students. (I do define the symbols in asides).

This may not be the right thing to do. If a student finds it hard to learn to use symbols easily and fluently, should they be studying math?

[b]. I once knew a teenage German who spoke pretty good English, but he could not bear to use the English possessive case. That’s because German young people (assuming I understand this correctly) hate to say things like “Das Auto meines Vaters” and instead say “Das Auto von meinem Vater”. Unfortunately this resulted in his saying in English “The car from my father”, “The girlfriend from my brother” and so on…

[c]. I have been concerned primarily with understanding the difficulties students have when starting to study abstract math after they have had calculus. I have seen many students ace calculus and flunk abstract algebra or logic. There is a wall to fall off of there. The only organization I know of concerned with this is RUME, although it is involved with college calculus as well as what comes after.

References

[1] The symbolic language of math.

[2] Cognitive dissonance.

[3] Conditional assertions.

Send to Kindle