Tag Archives: analytic

Tangents

The interactive examples in this post require installing Wolfram CDF player, which is free and works on most desktop computers using Firefox, Safari and Internet Explorer, but not Chrome. The source code is the Mathematica Notebook Tangent Line.nb, which is available for free use under a Creative Commons Attribution-ShareAlike 2.5 License. The notebook can be read by CDF Player if you cannot make the embedded versions in this post work.

This is an experiment in exposition of the mathematical concepts of tangent.  It follows the same pattern as my previous post on secant, although that post has explanations of my motivation for this kind of presentation that are not repeated here.

Tangent line

A line is tangent to a curve (in the plane) at a given point if all the following conditions hold (Wikipedia has more detail.):

  1. The line is a straight line through the point.
  2. The curve goes through that point.
  3. The curve is differentiable in a neighborhood of the point.
  4. The slope of the straight line is the same as the derivative of the curve at that point.

In this picture the curve is $ y=x^3-x$ and the tangent is shown in red. You can click on the + signs for additional controls and information.

Etymology and metaphor

The word “tangent” comes from the Latin word for “touching”. (See Note below.) The early scholars who talked about “tangent” all read Latin and knew that the word meant touching, so the metaphor was alive to them.

The mathematical meaning of “tangent” requires that the tangent line have slope equal to the derivative of the curve at the point of contact. All of the red lines in the picture below touch the curve at the point (0, 1.5). None of them are tangent to the curve there because the curve has no derivative at the point:

The curve in this picture is defined by

The mathematical meaning restricts the metaphor. The red lines you can generate in the graph all touch the curve at one point, in fact at exactly at one point (because I made the limits on the slider -1 and 1), but there are not tangent to the curve.

Tangents can hug!

On the other hand, “touching” in English usage includes maintaining contact on an interval (hugging!) as well as just one point, like this:

The blue curve in this graph is given by

The green curve is the derivative dy/dx. Notice that it has corners at the endpoints of the unit interval, so the blue curve has no second derivative there. (See my post Curvature).

Tangent lines in calculus usually touch at the point of tangency and not nearby (although it can cross the curve somewhere else). But the red line above is nevertheless tangent to the curve at every point on the curve defined on the unit interval, according to the definition of tangent. It hugs the curve at the straight part.

The calculus-book behavior of tangent line touching at only one point comes about because functions in calculus books are always analytic, and two analytic curves cannot agree on an open set without being the same curve.

The blue curve above is not analytic; it is not even smooth, because its second derivative is broken at $x=0$ and $x=1$. With bump functions you can get pictures like that with a smooth function, but I am too lazy to do it.

Tangent on the unit circle

In trigonometry, the value of the tangent function at an angle $ \theta$ erected on the x-axis is the length of the segment of the tangent at (1,0) to the unit circle (in the sense defined above) measured from the x-axis to the tangent’s intersection with the secant line given by the angle. The tangent line segment is the red line in this picture:


This defines the tangent function for $ -\frac{\pi}{2} < x < \frac{\pi}{2}$.

The tangent function in calculus

That is not the way the tangent function is usually defined in calculus. It is given by \tan\theta=\frac{\sin\theta}{\cos\theta}, which is easily seen by similar triangles to be the same on -\frac{\pi}{2} < x < \frac{\pi}{2}.

We can now see the relationship between the geometric and the $ \frac{\sin\theta}{\cos\theta}$ definition of the tangent function using this graph:


The red segment and the green segment are always the same length.
It might make sense to extend the geometric definition to $ \frac{\pi}{2} < x < \frac{3\pi}{2}$ by constructing the tangent line to the unit circle at (-1,0), but then the definition would not agree with the $ \frac{\sin\theta}{\cos\theta}$ definition.

References

Send to Kindle

Three kinds of mathematical thinkers

This is a continuation of my post Syntactic and semantic thinkers, in which I mentioned Leone Burton’s book [1] but hadn’t read it yet.  Well, now it is due back at the library so I’d better post about it!

I recommend this book for anyone interested in knowing more about how mathematicians think about and learn math.  The book is based on in-depth interviews with seventy mathematicians.  (One in-depth interview is worth a thousand statistical studies.)   On page 53, she writes

At the outset of this study, I had two conjectures with respect to thinking style.  The first was that I would find the two different thinking styles,the visual and the analytic, well recorded in the literature… The second was that research mathematicians would move flexibly between the two.  Neither of these conjectures were confirmed.

What she discovered was three styles of mathematical thinking:

Style A: Visual (or thinking in pictures, often dynamic)

Style B: Analytic (or thinking symbolically, formalistically)

Style C: Conceptual (thinking in ideas, classifying)

Style B corresponds more or less with what was called “syntactic” in [3] (based on [2]).  Styles A and C are rather like the distinctions I made in [3] that I called “conceptual” and “visual”, although I really want Style A to communicate not only “visual” but “geometric”.

I recommend jumping through the book reading the quotes from the interviews.  You get a good picture of the three styles that way.

Visual vs. conceptual

I had thought about this distinction before and have had a hard time explaining what “conceptual” means, particularly since for me it has a visual component.  I mentioned this in [3].  I think about various structures and their relationship by imagining them as each in a different part of a visual field, with the connections as near as I can tell felt rather than seen.  I do not usually think in terms of the structures’ names (see [4]).  It is the position that helps me know what I am thinking about.

When it comes time to write up the work I am doing, I have to come up with names for things and find words to describe the relationships that I was feeling. (See remark (5) below).  Sometimes I have also written things down and come up with names, and if this happened very much I invariable get a clash of notation that didn’t bother me when I was thinking about the concepts because the notations referred to things in different places.

I would be curious if others do math this way.  Especially people better than I am.  (Clue to a reasonable research career:  Hang around people smarter than you.)

Remarks

1) I have written a lot about images and metaphors [5], [6].  They show up in the way I think about things sometimes.  For example, when I am chasing a diagram I am thinking of each successive arrow as doing something.  But I don’t have any sense that I depend a lot on metaphors.  What I depend on is my experience with thinking about the concept!

2) Some of the questions on Math Overflow are of the “how do I think about…” type (or “what is the motivation for…”).  Some of the answers have been Absolutely Entrancing.

3) Some of the respondents in [1] mentioned intuition, most of them saying that they thought of it as an important part of doing math.  I don’t think the book mentioned any correlation between these feelings and the Styles A, B, C, but then I didn’t read the book carefully.  I never read any book carefully. (My experience with Style B of the subtype Logic Rules diss intuition. But not analysts of the sort who estimate errors and so on.)

4) Concerning A, B, C:  I use Style C (conceptual) thinking mostly, but a good bit of Style (B) (analytic) as well.  I think geometrically when I do geometry problems, but my research has never tended in that direction.  Often the analytic part comes after most of the work has been done, when I have to turn the work into a genuine dry-bones proof.

5) As an example of how I have sometimes worked, I remember doing a paper about lifting group automorphisms (see [7]), in which I had a conceptual picture with a conceptual understanding of the calculations of doing one transformation after another which produced an exact sequence in cohomology.  When I wrote it up I thought it would be short.  But all the verifications made the paper much longer.  The paper was conceptually BigChunk BigChunk BigChunk BigChunk … but each BigChunk required a lot of Analytic work.  Even so, I missed a conceptual point (one of the groups involved was a stabilizer but I didn’t notice that.)

References

[1] Leone Burton, Mathematicians as Enquirers: Learning about Learning Mathematics.  Kluwer, 2004.

[2] Keith Weber, Keith Weber, How syntactic reasoners can develop understanding, evaluate conjectures, and generate counterexamples in advanced mathematics. Proof copy available from Science Direct.

[3] Post on this blog: Syntactic and semantic thinkers.

[4] Post: Thinking without words.

[5] Post: Proofs without dry bones.

[6] Abstractmath.org article on Images and Metaphors.

[7] Post: Automorphisms of group extensions updated.

Send to Kindle