## Conceptual and Computational

I have posted a revision of the article Conceptual and Computational on abstractmath.org.

• It is the result of my first adventure in revising abstractmath.org in accordance with the ideas in my recent Gyre&Gimble post Writing math for the web.
• One part of the new article incorporates some of the ideas of my post
The power of being naive
• I did not use the manipulable diagrams in the Naive post in the abstractmath post. It’s not clear to me how many one time drop-ins (which is what I mostly get in abstractmath) will be willing to install Wolfram CDF Player to fiddle with one or two diagrams.
• I have been pleased at the way many of the topics covered in abstractmath come up high when you search for them in Google (including Conceptual Computational, but also things like Mathematical Object and Language of Math (where I even beat Wikipedia)). However, it may be that the high rank occurs because Google knows who I am. I will investigate next time I am in a library!
• I expect to post pieces of Abstracting Algebra on abstractmath when they become decently finished enough.

## Abstract objects

Some thoughts toward revising my article on mathematical objects.

Mathematical objects are a kind of abstract object.  There are lots of abstract objects that are not mathematical objects,  For example, if you keep a calendar or schedule for appointments, that calendar is an abstract object.  (This example comes from [2]).

It may be represented as a physical object or you may keep it entirely in your head.  I am not going to talk about the latter possibility, because I don't know what to say.

1. If it is a paper calendar, that physical object represents the information that is contained in your calendar.
2. Same for a calendar on a computer, but that is stored as magnetic bits on a disk or in flash memory. A computer program (part of the operating system) is required to present it on the screen in such a way that you can read it.  Each time you open it, you get a new physical representation of the calendar.

Your brain contains a module (see [5], [7]) that interprets the representation in (1) or (2) and which has connections with other modules in your brain for dates, times, locations and whether the appointment is for a committee, a medical exam, or whatever.

The calendar-interpreter module in your brain is necessary for the physical object to be a calendar.  The physical object is not in itself your calendar.  The calendar in this sense does not exist in the physical world.  It is abstract.  Since we think of it as a thing, it is an abstract object.

The abstract object "my calendar" affects the physical world (it causes you to go to the dentist next Tuesday).  The relation of the abstract object to the physical world is mediated by whatever physical object you call your calendar along with the modules in the brain that relate to it.  The modules in the brain are actions by physical objects, so this point of view does not involve Cartesian style dualism.

Note:  A module is a meme.  Are all memes modules?  This needs to be investigated.  Whatever they are, they exist as physical objects in people's brains.

## Mathematical objects

A rigorous proof of a theorem about a mathematical object tends to refer to the object as if it were absolutely static and did not affect anything in the physical world.  I talked about this in [10], where I called it the dry bones representation of a mathematical object.  Mathematical objects don't have to be thought of this way, but (I suggest) what makes them mathematical objects is that they can be thought of in dry bones mode.

If you use calculus to figure out how much fuel to use in a rocket to make it go a mile high, then actually use that amount in the rocket and send it off, your calculations have affected your physical actions, so you were thinking of the calculations as an abstract object.  But if you sit down to check your calculations, you concentrate on the steps one by one with the rules of algebra and calculus in mind.  You are looking at them as inert objects, like you would look at a bone of a dinosaur to see what species it belongs to. From that point of view your calculations form a mathematical object, because you are using the dry-bones approach.

## Caveat

All this blather is about how you should think about mathematical objects.  It can be read as philosophy, but I have no intention of defending it as philosophy.  People learning abstract math at college level have a lot of trouble thinking about mathematical objects as objects, and my intention is to start clarifying some aspects of how you think about them in different circumstances.  (The operative word is "start" — there is a lot more to be said.)

## About the exposition of this post (a commercial)

You will notice that I gave examples of abstract objects but did not define the word "abstract object".  I did the same with mathematical objects.  In both cases, I put the word "abstract object" or "mathematical object" in boldface at a suitable place in the exposition.

That is not the way it is done in math, where you usually make the definition of a word in a formal way, marking it as Definition, putting the word in bold or italics, and listing the attributes it must have.  I want to point out two things:

• For the most part, that behavior is peculiar to mathematics.
• This post is not a presentation of mathematical ideas.

This gives me an opportunity for a commercial:  Read what we have written about definitions in References [1], [3] and [4].

## References

1. Atish Bagchi and Charles Wells, Varieties of Mathematical Prose, 1998.
2. Reuben Hersh, What is mathematics, really? Oxford University Press, 1997
3. Charles Wells, Handbook of Mathematical Discourse.
4. Charles Wells, Mathematical objects in abstractmath.org
5. Math and modules of the mind (previous post)
6. Mathematical Concepts (previous post)
7. Thinking about abstract math (previous post)
8. Terrence W. Deacon, Incomplete Nature.  W. W. Norton, 2012. [I have read only a little of this book so far, but I think he is talking about abstract objects in the sense I have described above.]
9. Gideon Rosen, Abstract Objects.  Stanford Encyclopedia of Philosophy.
10. Representations II: Dry Bones (previous post)

http://plato.stanford.edu/entries/abstract-objects/

## Proofs without dry bones

I have discussed images, metaphors and proofs in math in two ways:

(A) A mathematical proof

A monk starts at dawn at the bottom of a mountain and goes up a path to the top, arriving there at dusk. The next morning at dawn he begins to go down the path, arriving at dusk at the place he started from on the previous day. Prove that there is a time of day at which he is at the same place on the path on both days.

Proof: Envision both events occurring on the same day, with a monk starting at the top and another starting at the bottom at the same time and doing the same thing the monk did on different days. They are on the same path, so they must meet each other. The time at which they meet is the time required.

This example comes from Fauconnier, Mappings in Thought and Language, Cambridge Univ. Press, 1997. I discuss it in the Handbook, pages 46 and 153. See the Wikipedia article on conceptual blending.

(B) Rigor and rigor mortis

The following is quoted from a previous post here. See also the discussion in abstractmath.

When we are trying to understand or explain math, we may use various kinds of images and metaphors about the subject matter to construct a colorful and rich representation of the mathematical objects and processes involved. I described some of these briefly here. They can involve thinking of abstract things moving and changing and affecting each other.

When we set out to prove some math statement, we go into what I have called “rigorous mode”. We feel that we have to forget some of the color and excitement of the rich view. We must think of math objects as inert and static. They don’t move or change over time and they don’t interact with other objects or the real world. In other words, pretend that all math objects are dead.

We don’t always go all the way into this rigorous mode, but if we use an image or metaphor in a proof and someone challenges us about it, we may rewrite that part to get rid of the colorful representation and replace it by a calculation or line of reasoning that refers to the math objects as if they were inert and static – dead.

I want to clear up some tension between these two ideas.

The argument in (A) is a genuine mathematical proof, just as it is written. It contains hidden assumptions (enthymemes), but all math proofs contain hidden assumptions. My remarks in (B) do not mean that a proof is not a proof until everything goes dead, but that when challenged you have to abandon some of the colorful and kinetic reasoning to make sure you have it right. (This is a standard mathematical technique (note 1).)

One of the hidden assumptions in (A) is that two monks walking the opposite way on the path over the same interval of time will meet each other. This is based on our physical experience. If someone questions this we have several ways to get more rigorous. One many mathematicians might think of is to model the path as a curve in space and consider two different parametrizations by the unit interval that go in opposite directions. This model can then appeal to the intermediate value theorem to assert that there is a point where the two parametrizations give the same value.

I suppose that argument goes all the way to the dead. In the original argument the monk is moving. But the parametrized curve just sits there. The parametrizations are sets of ordered pairs in R x (R x R x R). Nothing is moving. All is dry bones. Ezekiel has not done his thing yet.

This technique works, I think, because it allows classical logic to be correct. It is not correct in everyday life when things are moving and changing and time is passing.

Avoid models; axiomatize directly
But it certainly is not necessary to rigorize this argument by using parametrizations involving the real numbers. You could instead look at the situation of the monk and make some axioms the events being described. For example, you could presumably make axioms on locations on the path that treat the locations as intervals rather than as points.

The idea is to make axioms that state properties that intervals have but doesn’t say they are intervals. For example that there is a relation “higher than” between locations that must be reflexive and transitive but not antisymmetric. I have not done this, but I would propose that you could do this without recreating the classical real numbers by the axioms. (You would presumably be creating the intuitionistic real numbers.)

Of course, we commonly fall into using the real numbers because methods of modeling using real numbers have been worked out in great detail. Why start from scratch?

About the heading on this section: There is a sense in which “axiomatizing directly” is a way of creating a model. Nevertheless there is a distinction between these two approaches, but I am to confused to say anything about this right now.

First order logic.
It is commonly held that if you rigorize a proof enough you could get it all the way down to a proof in first order logic. You could do this in the case of the proof in (A) but there is a genuine problem in doing this that people don’t pay enough attention to.

The point is you replace the path and the monks by mathematical models (a curve in space) and their actions by parametrizations. The resulting argument calls on well known theorems in real analysis and I have no doubt can be turned into a strict first order logic argument. But the resulting argument is no longer about the monk on the path.

The argument in (A) involves our understanding of a possibly real physical situation along with a metaphorical transference in time of the two walks (a transference that takes place in our brain using techniques (conceptual blending) the brain uses every minute of every day). Changing over to using a mathematical model might get something wrong. Even if the argument using parametrized curves doesn’t have any important flaws (and I don’t believe it does) it is still transferring the argument from one situation to another.

Conclusion:
Mathematical arguments are still mathematical arguments whether they refer to mathematical objects or not. A mathematical argument can be challenged and tested by uncovering hidden assumptions and making them explicit as well as by transferring the argument to a classical mathematical situation.

Note 1. Did you ever hear anyone talking about rigor requiring making images and metaphors dead? This is indeed a standard mathematical technique but it is almost always suppressed, or more likely unnoticed. But I am not claiming to be the first one to reveal it to the world. Some of the members of Bourbaki talked this way. (I have lost the reference to this.)

They certainly killed more metaphors than most mathematicians.

Note 2. This discussion about rigor and dead things is itself a metaphor, so it involves a metametaphor. Metaphors always have something misleading about them. Metametaphorical statements have the potential of being far worse. For example, the notion that mathematics contains some kind of absolute truth is the result of bad metametaphorical thinking.