Category Archives: language of math

More about the definition of function

Maya Incaand commented on my post Definition of "function":

Why did you decide against "two inequivalent descriptions in common use"?  Is it no longer true?

This question concerns [1], which is a draft article.  I have not promoted it to the standard article in abstractmath because I am not satisfied with some things in it. 

More specifically, there really are two inequivalent descriptions in common use.  This is stated by the article, buried in the text, but if you read the beginning, you get the impression that there is only one specification.  I waffled, in other words, and I expect to rewrite the beginning to make things clearer.

Below are the two main definitions you see in university courses taken by math majors and grad students.  A functional relation has the property that no two distinct ordered pairs have the same first element.

Strict definition: A function consists of a functional relation with specified codomain (the domain is then defined to be the set of first elements of pairs in the relation).  Thus if $A$ and $B$ are sets and $A\subseteq B$, then the identity function $1_A:A\to A$ and the inclusion function $i:A\to B$  are two different functions.

Relational definition: A function is a functional relation.  Then the identity and inclusion functions are the same function.  This means that a function and its graph are the same thing (discussed in the draft article).

These definitions are subject to variations:

Variations in the strict definition: Some authors use "range" for "codomain" in the definition, and some don't make it clear that two functions with the same functional relation but different codomains are different functions.

Variations in the relational definition: Most such definitions state explicitly that the domain and range are determined by the relation (the set of first coordinates and the set of second coordinates). 

Formalism

There are many other variations in the formalism used in the definition.  For example, the strict definition can be formalized (as in Wikipedia) as an ordered triple $(A, B, f)$ where $A$ and $B$ are sets and $f$ is a functional relation with the property thar every element of $A$ is the first element of an ordered pair in the relation.  

You could of course talk about an ordered triple $(A,f,B)$ blah blah.  Such definitions introduce arbitrary constructions that have properties irrelevant to the concept of function.  Would you ever say that the second element of the function $f(x)=x+1$ on the reals is the set of real numbers?  (Of course, if you used the formalism $(A,f,B)$ you would have to say the second element of the function is its graph! )

It is that kind of thing that led me to use a specification instead of a definition.  If you pay attention to such irrelevant formalism there seems to be many definitions of function.  In fact, at the university level there are only two, the strict definition and the relational definition.  The usage varies by discipline and age.  Younger mathematicians are more likely to use the strict definition.  Topologists use the strict definition more often than analysts (I think).

Usage

There is also variation in usage.

  • Most authors don't tell you which definition they use, and it often doesn't matter anyway. 
  • If an author defines a function using a formula, there is commonly an implicit assumption that the domain includes everything for which the formula is well-defined.  (The "everything" may be modified by referring to it as an integer, real, or complex function.)

Definitions of function on the web

Below are some definitions of function that appear on the web.  I have excluded most definitions aimed at calculus students or below; they often assume you are talking about numbers and formulas.  I have not surveyed textbooks and research papers.  That would have to be done for a proper scholarly article about mathematical usage of "function". But most younger people get their knowledge from the web anyway.

  1. Abstractmath draft article: Functions: Specification and Definition.  (Note:  Right now you can't get to this from the Table of Contents; you have to click the preceding link.) 
  2. Gyre&Gimble post: Definition of "function"
  3. Intmath discussion of function  Function as functional relation between numbers, with induced domain and range.
  4. Mathworld definition of function Functional-relation definition.  Defines $F:A\to B$ in a way that requires $B$ to be the image.
  5. Planet Math definition of function Strict definition.
  6. Prime Encyclopedia of Mathematics Functional-relation definition.
  7. Springer Encyclopedia of Math definition of function  Strict definition, except not clear if different codomains mean different functions.
  8. Wikipedia definition of function Discusses both definitions.
  9. Wisconsin Department of Public Instruction Definition of function  Function as functional relation.
Send to Kindle

The meaning of the word “superposition”

This is from the Wikipedia article on Hilbert's 13th Problem as it was on 31 March 2012:

[Hilbert’s 13th Problem suggests this] question: can every continuous function of three variables be expressed as a composition  of finitely many continuous functions of two variables? The affirmative answer to this general question was given in 1957 by Vladimir Arnold, then only nineteen years old and a student of Andrey Kolmogorov. Kolmogorov had shown in the previous year that any function of several variables can be constructed with a finite number of three-variable functions. Arnold then expanded on this work to show that only two-variable functions were in fact required, thus answering Hilbert's question.  

In their paper A relation between multidimensional data compression and Hilbert’s 13th  problem,  Masahiro Yamada and Shigeo Akashi describe an example of Arnold's theorem this way: 

Let $f ( \cdot , \cdot, \cdot )$ be the function of three variable defined as \(f(x, y, z)=xy+yz+zx\), $x ,y , z\in \mathbb{C}$ . Then, we can easily prove that there do not exist functions of two variables $g(\cdot , \cdot )$ , $u(\cdot, \cdot)$ and $v(\cdot , \cdot )$ satisfying the following equality: $f(x, y, z)=g(u(x, y),v(x, z)) , x , y , z\in \mathbb{C}$ . This result shows us that $f$ cannot be represented any 1-time nested superposition constructed from three complex-valued functions of two variables. But it is clear that the following equality holds: $f(x, y, z)=x(y+z)+(yz)$ , $x,y,z\in \mathbb{C}$ . This result shows us that $f$ can be represented as a 2-time nested superposition.

The article about superposition in All about circuits says:

The strategy used in the Superposition Theorem is to eliminate all but one source of power within a network at a time, using series/parallel analysis to determine voltage drops (and/or currents) within the modified network for each power source separately. Then, once voltage drops and/or currents have been determined for each power source working separately, the values are all “superimposed” on top of each other (added algebraically) to find the actual voltage drops/currents with all sources active. 

Superposition Theorem in Wikipedia:

The superposition theorem for electrical circuits states that for a linear system the response (Voltage or Current) in any branch of a bilateral linear circuit having more than one independent source equals the algebraic sum of the responses caused by each independent source acting alone, while all other independent sources are replaced by their internal impedances.

Quantum superposition in Wikipedia:  

Quantum superposition is a fundamental principle of quantum mechanics. It holds that a physical system — such as an electron — exists partly in all its particular, theoretically possible states (or, configuration of its properties) simultaneously; but, when measured, it gives a result corresponding to only one of the possible configurations (as described in interpretation of quantum mechanics).

Mathematically, it refers to a property of solutions to the Schrödinger equation; since theSchrödinger equation is linear, any linear combination of solutions to a particular equation will also be a solution of it. Such solutions are often made to be orthogonal (i.e. the vectors are at right-angles to each other), such as the energy levels of an electron. By doing so the overlap energy of the states is nullified, and the expectation value of an operator (any superposition state) is the expectation value of the operator in the individual states, multiplied by the fraction of the superposition state that is "in" that state

The CIO midmarket site says much the same thing as the first paragraph of the Wikipedia Quantum Superposition entry but does not mention the stuff in the second paragraph.

In particular, the  Yamada & Akashi article describes the way the functions of two variables are put together as "superposition", whereas the Wikipedia article on Hilbert's 13th calls it composition.  Of course, superposition in the sense of the Superposition Principle is a composition of multivalued functions with the top function being addition.  Both of Yamada & Akashi's examples have addition at the top.  But the Arnold theorem allows any continuous function at the top (and anywhere else in the composite).  

So one question is: is the word "superposition" ever used for general composition of multivariable functions? This requires the kind of research I proposed in the introduction of The Handbook of Mathematical Discourse, which I am not about to do myself.

The first Wikipedia article above uses "composition" where I would use "composite".  This is part of a general phenomenon of using the operation name for the result of the operation; for examples, students, even college students, sometimes refer to the "plus of 2 and 3" instead of the "sum of 2 and 3". (See "name and value" in abstractmath.org.)  Using "composite" for "composition" is analogous to this, although the analogy is not perfect.  This may be a change in progress in the language which simplifies things without doing much harm.  Even so, I am irritated when "composition" is used for "composite".

Quantum superposition seems to be a separate idea.  The second paragraph of the Wikipedia article on quantum superposition probably explains the use of the word in quantum mechanics.

Send to Kindle

Bugs in English and in math

Everyone knows that computer programs have bugs.  In fact, languages have bugs, too, although we don't usually call them that.  

Bugs in English 

  

Right

Q: "Should I turn left at the next corner?" A: "Right".  Probably most Americans who drive now know this bug.  The answer could mean "yes" or "turn right".  So we have to stop and think how to answer this question.  That makes it a bug.  

Too, two

Comment: " We will take Route 30".  Answer: "We will take Route 30 too".  This bug is probably responsible for the survival of the word "also".  

Note that unlike the case of "right", this is a bug only of spoken English.

Subject and predicate

In Comma rule found dysfunctional, I wrote about the problem that in formal English writing there is no way to indicate where the subject ends and the predicate begins.  This causes a problem reading complicated sentences with many clauses such as academic writing often uses.  Of course, one way around this is to write short, simple sentences!  (That sounds like the subject of a future blog…) 

Bugs in the symbolic language of math

  

Fractions

In both Excel and Mathematica, "1/2*3" means 3/2. Now, I would think "1/2a" means "1/(2a)", but younger mathematicians are taught PEMDAS (see Purplemath), which says that division and multiplication have the same precedence and operations are evaluated from left to right.  

 If in Mathematica you define a function f[a_] := 1/2a, f[3] evaluates to 3/2, so Mathematica (and most other computer languages) agree with PEMDAS. (Note: When you write 1/2a in a Mathematica notebook, it automatically puts a space between the 2 and the a, and space in Mathematica means times, so it does warn you.)

Nevertheless, my ancient education would lead me to write (1/2)a for that meaning.  This means I must learn to write 1/(2a) for the other meaning instead of 1/2a.  

Questions:

  • Did the language really change or was I always "doing it wrong"?  I would like to hear from other ancient mathematicians.  (But I don't know very many who would read blogs or Purplemath.)
  • Should such a phenomenon be called a bug? 

Repeated exponentiation

In Excel, "2^2^3" means $(2^2)^3$, in other words, 64.  In Mathematica, it means $2^{(2^3)}=2^8=256$.  My impression is that most mathematicians expect it to mean $2^{(2^3)}$.  

References: This post in Walking Randomly, my post Mathematical UsageWikipedia's article.  

Exponentiation on functions is ambiguous

If $f:\mathbb{R}\to\mathbb{R}$ is a function, $f^2(x)$ can mean either $f(f(x))$ or $f(x)f(x)$, and both usages are common.  You should tell your students about this because no one is ever going to make one of the usages go away.

A far worse catastrophe is the fact that in calculus books, $\sin^2x=(\sin\,x)(\sin\,x)$ but $\sin^{-1}x=\text{arcsin}\,x$.  I betcha (lived in Minnesota four years now) we could succeed with a campaign to convince calc book publishers to always write $(\sin\,x)^2$ and $\arcsin\,x$.  

Bugs in the Mathematical Dialect of English

The mathematical dialect of English is what I call Mathematical English in the abstractmath website.  It is a different language from the symbolic language, which is not a dialect of English.

I have written about the problems with Mathematical English in a ridiculous number of places.  (See references in The Handbook of Mathematical Discourse).  It is normal for a dialect of a language to use words and grammatical structures that in the original language mean different things.  (See Dialects below).

Words with different meanings

  • A set is a group in standard English, but not in math English.  
  • The number 2+3i is a real number in standard English, but not in math English.  
  • And so on.

Use of adjectives and prefixes

  • A "noncommutative ring" has commutative addition.
  • A "semigroup" has a fully defined binary operation.

If, then

The bug that grabs math newbies by the throat and won't let go is the meaning of "If P, then Q".  

  • "If a number is divisible by 4, then it is even" in math dialect means a number not divisible by 4 might be even anyway.
  • "If you eat your broccoli you will get your dessert" in standard American Parental English does not mean you might get your dessert if you don't eat your broccoli.

And then there is the phenomenon of Vacuous Implication, which leaves students gasping and writhing.

About "dialects"

Most Americans are not familiar with dialects in the sense I am using the word here, since the only really different dialects we have are Gullah and Hawaiian Pidgin, both of which are very hard to understand; although for example Appalachian English and African-American urban vernacular [1] are dialects of a milder sort.  I grew up in Savannah and heard diluted Gullah sometimes on the street (didn't understand much).  I am also rather familiar with Züritüütsch since we lived in Zürich for a year.   

What the rest of the world call dialects have many distinctive properties:

  • They have nonstandard pronunciation to the point where they are difficult to understand. 
  • They have differences in grammar.  (Both Gullah and especially Hawaiian Creole have differences in grammar from Standard English.) 
  • They have differences in vocabulary, enough sometimes to cause misunderstanding.

I grew up speaking an Atlanta dialect, which really did have differences in all those parameters.  But what people today call a Southern accent is really just an accent (minor variations in pronunciation), not a dialect.  

Hawaiian Creole, and possibly Gullah, but not the other dialects I mentioned, are singled out by linguists as creoles because they been modified heavy influence from another language.  Züritüütsch is not a creole, but it is quite difficult for native German-speakers to understand.  The Swiss situation particularly emphasizes the distinction between "dialect" and "accent".  The typical native of Zürich speaks Züritüütsch and also speaks standard German with a Swiss accent.  

Reference

[1] What Language Is (And What It Isn't and What It Could Be) by John H. McWhorter. Gotham, 2011.

 

 

Send to Kindle

Whole numbers

Sue Van Hattum wrote in response to a recent post:

I’d like to know what you think of my ‘abuse of terminology’. I teach at a community college, and I sometimes use incorrect terms (and tell the students I’m doing so), because they feel more aligned with common sense.

To me, and to most students, the phrase “whole numbers” sounds like it refers to anything that doesn’t need fractions to represent it, and should include negative numbers. (It then, of course, would mean the same thing that the word integers does.) So I try to avoid the phrase, mostly. But I sometimes say we’ll use it with the common sense meaning, not the official math meaning.

Her comments brought up a couple of things I want to blather about.

Official meaning

There is no such thing as an "official math meaning".  Mathematical notation has no governing authority and research mathematicians are too ornery to go along with one anyway.  There is a good reason for that attitude:  Mathematical research constantly causes us to rethink the relationship among different mathematical ideas, which can make us want to use names that show our new view of the ideas.  An excellent example of that is the evolution of the concept of "function" over the past 150 years, traced in the Wikipedia article.

What some "authorities" say about "whole number":

  • MathWorld  says that "whole number" is used to mean any of these:  Any positive integer, any nonnegative integer or any integer.
  • Wikipedia also allows all three meanings.
  • Webster's New World dictionary (of which I have been a consultant, but they didn't ask me about whole numbers!) gives "any integer" as a second meaning.
  • American Heritage Dictionary give "any integer" as the only meaning.
  • Someone stole my copy of Merriam Webster.

Common Sense Meaning

Mathematicians think about and talk any particular kind of math object using images and metaphors.  Sometimes (not very often) the name they give to a math object embodies a metaphor.  Examples:

  • A complex number is usually notated using two real parameters, so it looks more complicated than a real number.
  • "Rings" were originally called that because the first examples were integers (mod n) for some positive integer, and you can think of them as going around a clock showing n hours.

Unfortunately, much of the time the name of a kind of object contains a suggestive metaphor that is bad,  meaning that it suggests an erroneous picture or idea of what the object is like.

  • A "group" ought to be a bunch of things.  In other words, the word ought to mean "set".
  • The word "line" suggests that it ought to be a row of points.  That suggests that each point on a line ought to have one next to it.  But that's not true on the "real line"!

Sue's idea that the "common sense" meaning of "whole number" is "integer" refers, I think, to the built-in metaphor of the phrase "whole number" (unbroken number).

I urge math teachers to do these things:

  • Explain to your students that the same math word or phrase can mean different things in different books.
  • Convince your  students to avoid being fooled by the common-sense (metaphorical meaning) of a mathematical phrase.

 

Send to Kindle

Mathematical usage

Comments about mathematical usage, extending those in my post on abuse of notation.

Geoffrey Pullum, in his post Dogma vs. Evidence: Singular They, makes some good points about usage that I want to write about in connection with mathematical usage.  There are two different attitudes toward language usage abroad in the English-speaking world. (See Note [1])

  • What matters is what people actually write and say.   Usage in this sense may often be reported with reference to particular dialects or registers, but in any case it is based on evidence, for example citations of quotations or a linguistic corpus.  (Note [2].)  This approach is scientific.
  • What matters is what a particular writer (of usage or style books) believes about  standards for speaking or writing English.  Pullum calls this "faith-based grammar".  (People who think in this way often use the word "grammar" for usage.)  This approach is unscientific.

People who write about mathematical usage fluctuate between these two camps.

My writings in the Handbook of Mathematical Discourse and abstractmath.org are mostly evidence based, with some comments here and there deprecating certain usages because they are confusing to students.  I think that is about the right approach.  Students need to know what is actual mathematical usage, even usage that many mathematicians deprecate.

Most math usage that is deprecated (by me and others) is deprecated for a reason.  This reason should be explained, and that is enough to stop it being faith-based.  To make it really scientific you ought to cite evidence that students have been confused by the usage.  Math education people have done some work of this sort.  Most of it is at the K-12 level, but some have worked with college students observing the way the solve problems or how they understand some concepts, and this work often cites examples.

Examples of usage to be deprecated

 

Powers of functions

f^n(x) can mean either iterated composition or multiplication of the values.  For example, f^2(x) can mean f(x)f(x) or f(f(x)).  This is exacerbated by the fact that in undergrad calculus texts,  \sin^{-1}x refers to the arcsine, and \sin^2 x refers to \sin x\sin x.  This causes innumerable students trouble.  It is a Big Deal.

In

Set "in" another set.  This is discussed in the Handbook.  My impression is that for students the problem is that they confuse "element of" with "subset of", and the fact that "in" is used for both meanings is not the primary culprit.  That's because most sets in practice don't have both sets and non-sets as elements.  So the problem is a Big Deal when students first meet with the concept of set, but the notational confusion with "in" is only a Small Deal.

Two

This is not a Big Deal.  But I have personally witnessed students (in upper level undergrad courses) that were confused by this.

Parentheses

The many uses of parentheses, discussed in abstractmath.  (The Handbook article on parentheses gives citations, including one in which the notation "(a,b)" means open interval once and GCD once in the same sentence!)  I think the only part that is a Big Deal, or maybe Medium Deal, is the fact that the value of a function f at an input x can be written either  "f\,x" or as "f(x)".  In fact, we do without the parentheses when the name of the function is a convention, as in \sin x or \log x, and with the parentheses when it is a variable symbol, as in "f(x)".  (But a substantial minority of mathematicians use f\,x in the latter case.  Not to mention xf.)  This causes some beginning calculus students to think "\sin x" means "sin" times x.

More

The examples given above are only a sampling of troubles caused by mathematical notation.   Many others are mentioned in the Handbook and in Abstractmath, but they are scattered.  I welcome suggestions for other examples, particularly at the college and graduate level. Abstractmath will probably have a separate article listing the examples someday…

Notes

[1] The situation Pullum describes for English is probably different in languages such as Spanish, German and French, which have Academies that dictate usage for the language.  On the other hand, from what I know about them most speakers of those languages ignore their dictates.

[2] Actually, they may use more than one corpus, but I didn't want to write "corpuses" or "corpora" because in either way I would get sharp comments from faith-based usage people.

References on mathematical usage

Bagchi, A. and C. Wells (1997), Communicating Logical Reasoning.

Bagchi, A. and C. Wells (1998)  Varieties of Mathematical Prose.

Bullock, J. O. (1994), ‘Literacy in the language of mathematics’. American Mathematical Monthly, volume 101, pages 735743.

de Bruijn, N. G. (1994), ‘The mathematical vernacular, a language for mathematics with typed sets’. In Selected Papers on Automath, Nederpelt, R. P., J. H. Geuvers, and R. C. de Vrijer, editors, volume 133 of Studies in Logic and the Foundations of Mathematics, pages 865  935.  

Epp, S. S. (1999), ‘The language of quantification in mathematics instruction’. In Developing Mathematical Reasoning in Grades K-12. Stiff, L. V., editor (1999),  NCTM Publications.  Pages 188197.

Gillman, L. (1987), Writing Mathematics Well. Mathematical Association of America

Higham, N. J. (1993), Handbook of Writing for the Mathematical Sciences. Society for Industrial and Applied Mathematics.

Knuth, D. E., T. Larrabee, and P. M. Roberts (1989), Mathematical Writing, volume 14 of MAA Notes. Mathematical Association of America.

Krantz, S. G. (1997), A Primer of Mathematical Writing. American Mathematical Society.

O'Halloran, K. L.  (2005), Mathematical Discourse: Language, Symbolism And Visual Images.  Continuum International Publishing Group.

Pimm, D. (1987), Speaking Mathematically: Communications in Mathematics Classrooms.  Routledge & Kegan Paul.

Schweiger, F. (1994b), ‘Mathematics is a language’. In Selected Lectures from the 7th International Congress on Mathematical Education, Robitaille, D. F., D. H. Wheeler, and C. Kieran, editors. Sainte-Foy: Presses de l’Université Laval.

Steenrod, N. E., P. R. Halmos, M. M. Schiffer, and J. A. Dieudonné (1975), How to Write Mathematics. American Mathematical Society.

Wells, C. (1995), Communicating Mathematics: Useful Ideas from Computer Science.

Wells, C. (2003), Handbook of Mathematical Discourse

Wells, C. (ongoing), Abstractmath.org.

Send to Kindle

Two

The post Are these questions unambiguous? in the blog Explaining Mathematics concerns the funny way mathematicians use the number “two” (Note [3]).  This is discussed in Abstractmath.org, based on usage quotations (see Note [1]) in the Handbook of Mathematical Discourse. They are citations  54, 119, 220, 229, 260, 322, 323 and 338.  The list is in the online version of the Handbook (see Note [2]) which takes forever to load.  (There is a separate file for users of the paperback book but it is currently trashed.)

The usage quirk concerning “two” is exemplified by statements such as these:

  1. The sum of any two even integers is even.
  2. Courant gives Leibniz’ rule for finding the Nth derivative of the product of two functions.  (This is from Citation 323.)
  3. Are there two positive integers m and n, both greater than 1, satisfying mn=9? (This is from Explaining Mathematics.)

Statements 1 and 2 are of course true.  They are still true if the “two” things are the same.  Mathematicians generally assume that such a statement includes the case where the two things are the same.  If the case that they are the same is excluded, the statement becomes an unnecessarily weak assertion.

Statement 3, in my opinion, is badly written.  If the two positive integers have to be distinct, the answer is “no”.   I think any competent mathematical writer would write something like, “There are not two distinct integers m and n both greater than 1 for which mn = 9″.

It is fair to say that when mathematicians refer to “two integers” in statements like these, they are allowed to be the same.  If they can’t be the same for the sentence to remain true, they will (or at least should) insert a word such as “distinct”.

Of course, in some sentences the two integers can’t be the same because of some condition imposed in the context.  That doesn’t happen in the citations I have listed.  Maybe someone can contribute an example.

Notes

[1] In the Handbook, usage quotations are called “citations”.  It appears to me that the commonest name for citations among lexicographers is “usage quotations”, so I will start calling them that.

[2] I created the online version of the Handbook hastily in 2006.  It needs work, since it has TeX mistakes (which may irritate you but should not interfere with readability) and omits the quotations, illustrations, and some backlinks, including backlinks for the citations.  Some Day When I Get A Round Tuit…

[3] This funny property of “two” was discussed many years ago by Steenrod or Knuth or someone, and is mentioned in a paper by Susanna Epp, but I don’t currently have access to any of the references.

 

Send to Kindle

Abuse of notation

I have recently read the Wikipedia article on Abuse of Notation (this link is to the version of 29 December 2011, since I will eventually edit it).  The Handbook of Mathematical Discourse and abstractmath.org mention this idea briefly.  It is time to expand the abstractmath article and to redo parts of the Wikipedia article, which  contains some confusions.

This is a preliminary draft, part of which I’ll incorporate into abstractmath after you readers make insightful comments :).

The phrase “Abuse of Notation” is used in articles and books written by research mathematicians.  It is part of Mathematical English.  This post is about

  • What “abuse of notation” means in mathematical writing and conversation.
  • What it could be used to mean.
  • Mathematical usage in general.  I will discuss this point in the context of the particular phrase “abuse of notation”, not a bad way to talk about a subject.

Mathematical Usage

Sources

If I’m going to write about the usage of Mathematical English, I should ideally verify what I claim about the usage by finding citations for a claim: documented quotations that illustrate the usage.  This is the standard way to produce any dictionary.

There is no complete authoritative source for usage of words and phrases in Mathematical English (ME), or for that matter for usage in the Symbolic Language (SL).

  • The Oxford Concise Dictionary of Mathematics [2] covers technical terms and symbols used in school math and in much of undergraduate math, but not so much of research math.  It does not mention being based on citations and it hardly talks about usage at all, even for notorious student-confusing notations such as “\sin^k x“. But it appears quite accurate with good explanations of the math it covers.
  • I wrote Handbook of Mathematical Discourse to stimulate investigations into mathematical usage.  It describes a good many usages in Mathematical English and the Symbolic Language, documented with citations of quotations, but is quite incomplete (as I said in its Introduction).  The Handbook has 428 citations for various usages.  (They are at the end of the on-line PDF version. They are not in the printed book, but are on the web with links to pages in the printed book.)
  • MathWorld has an extensive list of mathematical words, phrases and symbols, and accurate definitions or descriptions of them, even for a great many advanced research topics. It also frequently mentions usage (see formula and inverse sine), but does not give citations.
  • Wikipedia has the most complete set of definitions of mathematical objects that I know of.  The entries sometimes mention usage. I have not detected any entry that gives citations for usage.  Not that that should stop anyone from adding them.

Teaching mathematical usage

In explaining mathematical usage to students, particularly college-level or higher math students, you have choices:

  1. Tell them what you think the usage of a word, phrase, or symbol is, without researching citations.
  2. Tell them what you think the usage ought to be.
  3. Tell them what you think the usage is, supported by citations.

(1) has the problem that you can be wrong.  In fact when I worked on the Handbook I was amazed  at how wrong I could be in what the usage was, in spite of the fact that I had been thinking about usage in ME and SL since I first started teaching (and kept a folder of what I had noticed about various usages).  However,  professional mathematicians generally have a reasonably accurate idea about usage for most things, particularly in their field and in undergraduate courses.

(2) is dangerous.  Far too many mathematicians (but nevertheless a minority), introduce usage in articles and lecturing that is not common or that they invented themselves. As a result their students will be confused in trying to read other sources and may argue with other teachers about what is “correct”.  It is a gross violation of teaching ethics to tell the students that (for example) “x > 0″ allows x = 0 and not mention to them that nearly all written mathematics does not allow that.  (Did you know that a small percentage of mathematicians and educators do use that meaning, including in some secondary institutions in some countries?  It is partly Bourbaki’s fault.)

(3) You often can’t tell them what the usage is, supported by citations, because, as mentioned above, documented mathematical usage is sparse.

I think people should usually choose (1) instead of (2).  If they do want to introduce a new usage or notation because it is “more logical” or because “my thesis advisor used it” or something, they should reconsider.  Most such attempts have failed, and thousands of students have been confused by the attempts.

Abuse of notation

“Abuse of notation” is a phrase used in mathematical writing to describe terminology and notation that does not have transparent meaning. (Transparent meaning is described in some detail under “compositional” in the Handbook.)

Abuse of notation was originally defined in French, where the word “abus” does not carry the same strongly negative connotation that it does in English.

Suppression of parameters

One widely noticed practice called “abuse of notation”  is the use of the name of the underlying set of a mathematical structure to refer to a structure. For example, a group is a structure (G,\text{*}) where G is a set and * is a binary operation with certain properties. The most common way to refer to this structure is simply to call it G. Since any set of cardinality greater than 1 has more than one group structure on it, this does not include all the information needed to determine the group. This type of usage is cited in 82 below.  It is an example of suppression of parameters.

Writing “\log x” without mentioning the base of the logarithm is also an example of suppression of parameters.  I think most mathematicians would regard this as a convention rather than as an abuse of notation.  But I have no citations for this (although they would probably be easy to find).  I doubt that it is possible to find a rational distinction between “abuse of notation” and “convention”; it is all a matter of what people are used to saying.

Synecdoche

The naming of a structure by using the name of its underlying set is also an example of synecdoche, the naming of a whole by a part (for example, “wheels” to mean a car).

Another type of synecdoche that has been called abuse of notation is referring to an equivalence class by naming one of its elements.  I do not have a good quotation-citation that shows this use.  Sometimes people write 2 + 4 = 1 when they are working in the Galois field with 5 elements.  But that can be interpreted in more than one way.  If GF[5] consists of equivalence classes of integers (mod 5) then they are indeed using 2 (for example) to stand for the equivalence class of 2.  But they could instead define GF[5] in the obvious way with underlying set {0,1,2,3,4}.  In any case, making distinctions of that sort is pedantic, since the two structures are related by a natural isomorphism (next paragraph!)

Identifying objects via isomorphism

This is quite commonly called “abuse of notation” and is exemplified in citations 209, 395 and AB3.

Overloaded notation

John Harrison, in [1], uses “abuse of notation” to describe the use of a function symbol to apply to both an element of its domain and a subset of the domain.  This is an example of overloaded notation.  I have not found another citation for this usage other than Harrison and I don’t remember anyone using it.  Another example of overloaded notation is the use of the same symbol “\times” for multiplication of numbers, matrices and 3-vectors.  I have never heard that called abuse of notation.  But I have no authority to say anything about this usage because I haven’t made the requisite thorough search of the literature.

Powers of functions

The Wikipedia Article on abuse of notation (29 Dec 2011 version) mentions the fact that f^2(x) can mean either f(x)f(x) or f(f(x)).   I have never heard this called abuse of notation and I don’t think it should be called that.  The notation “f^2(x)” can in ordinary usage mean one of two things and the author or teacher should say which one they mean.  Many math phrases or symbolic expressions  can mean more than one thing and the author generally should say which.  I don’t see the point of calling this phenomenon abuse of notation.

Radial concept

The Wikipedia article mentions phrases such as “partial function”.  This article does provide a citation for Bourbaki for calling a sentence such as “Let f:A\to B be a partial function” abuse of notation.  Bourbaki is wrong in a deep sense (as the article implies).  There are several points to make about this:

  • Some authors, particularly in logic, define a function to be what most of us call a partial function.  Some authors  require a ring to have a unit and others don’t.  So what?
  • The phrase “partial function” has a standard meaning in math:  Roughly “it is a function except it is defined on only part of its domain”.  Precisely, f:A\to B is a partial function if it is a function f:A'\to B for some subset A' of A.
  • A partial function is not in general a function.  A stepmother is not a mother.  A left identity may not be an identity, but the phrase “left identity” is defined precisely.   An incomplete proof is not a proof, but you know what the phrase means! (Compare “expectant mother”).   This is the way we normally talk and think.  See the article “radial concept” in the Handbook.

Other uses

AB4 involves a redefinition of  “\in” in a special case.  Authors redefine symbols all the time.  This kind of redefinition on the fly probably should be avoided, but since they did it I am glad they mentioned it.

I have not talked about some of the uses mentioned in the Wikipedia article because I don’t yet understand them well enough.  AB1 and AB2 refer to a common use with pullback that I am not sure I understand (in terms of how they author is thinking of it).  I also don’t understand AB5.  Suggestions from readers would be appreciated.

Kill it!

Well, it’s more polite to say, we don’t need the phrase “abuse of notation” and it should be deprecated.

  • The use of the word “abuse” makes it sound like a bad thing, and most instances of abuse of notation are nothing of the sort.  They make mathematical writing much more readable.
  • Nearly everywhere it is used it could just as well be called a convention.  (This requires verification by studying math texts.)

Citations

The first three citations at in the Handbook list; the numbers refer to that list’s numbering. The others I searched out for the purpose of this post.

82. Busenberg, S., D. C. Fisher, and M. Martelli (1989), Minimal periods of discrete and smooth orbits. American Mathematical Monthly, volume 96, pages 5–17. [p. 8. Lines 2–4.]

Therefore, a normed linear space is really a pair (\mathbf{E},\|\cdot\|) where \mathbf{E} is a linear vector space and \|\cdot\|:\mathbf{E}\to(0,\infty) is a norm. In speaking of normed spaces, we will frequently abuse this notation and write \mathbf{E} instead of the pair (\mathbf{E},\|\cdot\|).

209. Hunter, T. J. (1996), On the homology spectral sequence for topological Hochschild homology. Transactions of the American Mathematical Society, volume 348, pages 3941–3953. [p. 3934. Lines 8–6 from bottom.]

We will often abuse notation by omitting mention of the natural isomorphisms making \wedge associative and unital.

395. Teitelbaum, J. T. (1991), ‘The Poisson kernel for Drinfeld modular curves’. Journal of the American Mathematical Society, volume 4, pages 491–511. [p. 494. Lines 1–4.]

\ldots may find a homeomorphism x:E\to \mathbb{P}^1_k such that \displaystyle x(\gamma u) = \frac{ax(u)+b}{cx(u)+d}. We will tend to abuse notation and identify E with \mathbb{P}^1_k by means of the function x.

AB1. Fujita, T. On the structure of polarized manifolds with total deficiency one.  I. J. Math. Soc. Japan, Vol. 32, No. 4, 1980.

Here we show examples of symbols used in this paper \ldots

L_{T}: The pull back of L to a space T by a given morphism T\rightarrow S . However, when there is no danger of confusion, we OFTEN write L instead of L_T by abuse of notation.

AB2. Sternberg, S. Minimal coupling and the symplectic mechanics of a classical
particle in the presence of a Yang-Mills field. Physics, Vol. 74, No. 12, pp. 5253-5254, December 1977.

On the other hand, let us, by abuse of notation, continue to write \Omega for the pullback of \Omega from F to P \times F by projection onto the second factor. Thus, we can write \xi_Q\rfloor\Omega = \xi_F\rfloor\Omega and \ldots

AB3. Dobson, D, and Vogel, C. Convergence of an iterative method for total variation denoising. SIAM J. Numer. Anal., Vol. 34, pp. 1779, October, 1997.

Consider the approximation

(3.7) u\approx U\stackrel{\text{def}}{=}\sum_{j=1}^N U_j\phi_j \ldots

In an abuse of notation, U will represent both the coefficient vector \{U_j\}_{j=1}^N and the corresponding linear combination (3.7).

AB4. Lewis, R, and Torczon, V. Pattern search algorithms for bound constrained minimization.  NASA Contractor Report 198306; ICASE Report No. 96-20.

By abuse of notation, if A is a matrix, y\in A means that the vector y is a column of A.

AB5. Allemandi, G, Borowiecz, A. and Francaviglia, M. Accelerated Cosmological Models in Ricci squared Gravity. ArXiv:hep-th/0407090v2, 2008.

This allows to reinterpret both f(S) and f'(S) as functions of \tau in the expressions:
\begin{equation*}\begin{cases}  f(S) = f(F(\tau)) = f(\tau )\\  f'(S) = f'(F(\tau )) = f'(\tau )\end{cases}\end{equation*}
following the abuse of notation f(F(t )) = f(t ) and f'(F(t )) = f'(t ).

References

[1] Harrison, J. Criticism and reconstruction, in Formalized Mathematics (1996).

[2] Clapham, C. and J. Nicholson.  Oxford Concise Dictionary of Mathematics, Fourth Edition (2009).  Oxford University Press.

 

Send to Kindle

Definition of “function”

I have made a major revision of the abstractmath.org article Functions: Specification and Definition.   The links from the revised article lead into the main abstractmath website, but links from other articles on the website still go back to the old version. So if you click on a link in the revised version, make it come up in a new window.

I expect to link the revision in after I make a few small changes, and I will take into account any comments from you all.

Remarks

1.  You will notice that the new version is in PDF instead of HTML.  A couple of other articles on the website are already in PDF, but I don’t expect to continue replacing HTML by PDF.   It is too much work.  Besides, you can’t shrink it to fit tablets.

2. It would also have been a lot of work to adapt the revision so that I could display it directly on Word Press.  In some cases I have written revisions first in WP and then posted them on the abmath website.  That is not so difficult and I expect to do it again.

Send to Kindle

Thinking about abstract math

 

The abstraction cliff

In universities in the USA, a math major typically starts with calculus, followed by courses such as linear algebra, discrete math, or a special intro course for math majors (which may be taken simultaneously with calculus), then go on to abstract algebra, analysis, and other courses involving abstraction and proofs.

At this point, too many of them hit a wall; their grades drop and they change majors.  They had been getting good grades in high school and in calculus because they were strong in algebra and geometry, but the sudden increase in abstraction in the newer courses completely baffles them. I believe that one big difficulty is that they can't grasp how to think about abstract mathematical objects.  (See Reference [9] and note [a].)   They have fallen off the abstraction cliff.  We lose too many math majors this way. (Abstractmath.org is my major effort to address the problems math majors have during or after calculus.)

This post is a summary of the way I see how mathematicians and students think about math.  I will use it as a reference in later posts where I will write about how we can communicate these ways of thinking.

Concept Image

In 1981, Tall and Vinner  [5] introduced the notion of the concept image that a person has about a mathematical concept or object.   Their paper's abstract says

The concept image consists of all the cognitive structure in the individual's mind that is associated with a given concept. This may not be globally coherent and may have aspects which are quite different from the formal concept definition.

The concept image you may have of an abstract object generally contains many kinds of constituents:

  • visual images of the object
  • metaphors connecting the object to other concepts
  • descriptions of the object in mathematical English
  • descriptions and symbols of the object in the symbolic language of math
  • kinetic feelings concerning certain aspects of the object
  • how you calculate parameters of the object
  • how you prove particular statements about the object

This list is incomplete and the items overlap.  I will write in detail about these ideas later.

The name "concept image" is misleading [b]), so when I have written about them, I have called them metaphors or mental representations as well as concept images, for example in [3] and [4].

Abstract mathematical concepts

This is my take on the notion of concept image, which may be different from that of most researchers in math ed. It owes a lot to the ideas of Reuben Hersh [7], [8].

  • An abstract mathematical concept is represented physically in your brain by what I have called "modules" [1] (physical constituents or activities of the brain [c]).
  • The representation generally consists of many modules.  They correspond to the list of constituents of a concept image given above.  There is no assumption that all the modules are "correct".
  • This representation exists in a semi-public network of mathematicians' and students' brains. This network exercises (incomplete) control over your personal representation of the abstract structure by means of conversation with other mathematicians and reading books and papers.  In this sense, an abstract concept is a social object.  (This is the only point of view in the philosophy of math that I know of that contains any scientific content.)

Notes

[a]  Before you object that abstraction isn't the only thing they have trouble with, note that a proof is an abstract mathematical object. The written proof is a representation of the abstract structure of the proof.  Of course, proofs are a special kind of abstract structure that causes special problems for students.

[b] Cognitive science people use "image" to include nonvisual representations, but not everyone does.  Indeed, cognitive scientists use "metaphor" as well with a broader meaning than your high school English teacher.  A metaphor involves the cognitive merging of parts of two concepts (specifically with other parts not merged). See [6].

[c] Note that I am carefully not saying what the modules actually are — neurons, networks of neurons, events in the brain, etc.   From the point of view of teaching and understanding math, it doesn't matter what they are, only that they exist and live in a society where they get modified by memes  (ideas, attitudes, styles physically transmitted from brain to brain by speech, writing, nonverbal communication, appearance, and in other ways).

References

  1. Math and modules of the mind (previous post)
  2. Mathematical Concepts (previous post)
  3. Mental, physical and mathematical representations (previous post)
  4. Images and Metaphors (abstractmath.org)
  5. David Tall and Schlomo Vinner, Concept Image and Concept Definition in Mathematics with particular reference to limits and continuity, Journal Educational Studies in Mathematics, 12 (May, 1981), no. 2, 151–169.
  6. Conceptual metaphor (Wikipedia article).
  7. What is mathematics, really? by Reuben Hersh, Oxford University Press, 1999.  Read online at Questia.
  8. 18 Unconventional Essays on the Nature of Mathematics, by Reuben Hersh. Springer, 2005.
  9. Mathematical objects (abstractmath.org).

 

 

Send to Kindle

Case Study in Exposition: Secant

The interactive examples in this post require installing Wolfram CDF player, which is free and works on most desktop computers using Firefox, Safari and Internet Explorer, but not Chrome. The source code comes from several Mathematica notebooks lists in the References. The notebooks are available for free use under a Creative Commons Attribution-ShareAlike 2.5 License. The notebook can be read by CDF Player if you cannot make the embedded versions in this post work.

Pictures, metaphors and etymology

Math texts and too many math teachers do not provide enough pictures and metaphors to help students understand a concept.  I suspect that the etymology of the technical terms might also be useful. This post is an experimental exposition of the math concept of “secant” that use pictures, metaphors and etymology to describe the concept.

The exposition is interlarded with comments about what I am doing and why.  An exposition directly aimed at students would be slimmer — but some explanations of why you are doing such and such in an exposition are not necessarily out of place every time!

Secant Line

The word “secant” is used in various related ways in math.  To start with, a secant line on a curve is the unique line determined by two distinct points on the curve, like this:


The word “secant” comes from the Latin word for “cut”, which came from the Indo-European root “sek”, meaning “cut”.  The IE root also came directly into English via various Germanic sound changes to give us “saw” and “sedge”.

The picture

Showing pictures of mathematical objects that the reader can fiddle with may make it much easier to understand a new concept.  The static picture you get above by keeping your mitts off the sliders requires imagining similar lines going through other pairs of points. When you wiggle the picture you see similar lines going through other pairs of points.  You also get a very strong understanding of how the secant line is a function of the two given points.  I don’t think that is obvious to someone without some experience with such things.

This belief contains the hidden claim that individuals vary a lot on how they can see the possibilities in a still picture that stands as an example of a lot of similar mathematical objects.  (Math books are full of such pictures.)  So people who have not had much practice learning about possible variation in abstract structures by looking at one motionless one will benefit from using movable parametrized pictures of various kinds.  This is the sort of claim that is amenable to field testing.

The metaphor

Most metaphors are based on a physical phenomenon.  The mathematical meanings of “secant” use the metaphor of cutting.  When the word “secant” was first introduced by a European writer (see its etymology) in the 16th century, the word really was a metaphor.   In those days essentially every European scholar read Latin. To them “secant” would transparently mean “cutting”.  This is not transparent to many of us these days, so the metaphor may be hidden.

If you examine the metaphor you realize that (like all metaphors) it involves making some remarkably subtle connections in your brain.

  • The straight line does not really cut the curve.  Indeed, the curve itself is both an abstract object that is not physical, so can’t be cut, and also the picture you see on the screen, which is physical, but what would it mean to cut it?  Cut the screen?  The line can’t do that.
  • You can make up a story that (for example) the use was suggested by the mental image of a mark made by a knife edge crossing the plane at points a and b that looks like it is severing the curve.
  • The metaphor is restricted further by saying that it is determined by two points on the curve.   This restriction turns the general idea of secant line into a (not necessarily faithful!) two-parameter family of straight lines.  You could define such a family by using one point on the curve and a slope, for example.  This particular way of doing it with two points on the curve leads directly to the concept of tangent line as limit.

Secant on circle

Another use of the word “secant” is the red line in this picture:


This is the secant line on the unit circle determined by the origin and one point on the circle, with one difference: The secant of the angle is the line segment between the origin and the point on the curve.  This means it corresponds to a number, and that number is what we mean by “secant” in trigonometry.

To the ancient Greeks, a (positive) number was the length of a line segment.

The Definition

The secant of an angle $\theta$ is usually defined as $\frac{1}{\cos\theta}$, which you can see by similar triangles is the length of the red line in the picture above.

In many parts of the world, trig students don’t learn the word “secant”. They simply use $\frac{1}{\cos\theta}$.

This illustrates important facts about definitions:

  • Different equivalent definitions all make the same theorems true.
  • Different equivalent definitions can give you a very different understanding of the concept.

The red-line-segment-in-picture definition gives you a majorly important visual understanding of the concept of “secant”.  You can tell a lot from its behavior right off (it goes to infinity near $\pi/2$, for example).

The definition $\sec\theta=\frac{1}{\cos\theta}$ gives you a way of computing $\sec\theta$.  It also reduces the definition of $ \sec\theta$ to a previously known concept.

It used to be common to give only the $ \frac{1}{\cos\theta}$ definition of secant, with no mention of the geometric idea behind it.  That is a crime.  Yes, I know many students don’t want to “understand” stuff, they only want to know how to do the problems.  Teachers need to talk them out of that attitude.  One way to do that in this case is to test them on the geometric definition.

Etymology

This idea was known to the Arabs, and brought into European view in the 16th century by Danish mathematician Thomas Fincke in “Geometria Rotundi” (1583), where the first known use of the word “secant” occurs.  I have not checked, but I suspect from the title of the book that the geometric definition was the one he used in the book.

It wold be interesting to know the original Arabic name for secant, and what physical metaphor it is based on.  A cursory search of the internet gave me the current name in Arabic for secant but nothing else.

Graph of the secant function

The familiar graph of the secant function can be seen as generated by the angle sweeping around the curve, as in the picture below. The two red line segments always have the same length.


References

Mathematica notebooks used in this post:

 

Send to Kindle