Category Archives: language of math

Variations in meaning in math

Words in a natural language may have different meanings in different social groups or different places.  Words and symbols in both mathematical English and the symbolic language vary according to specialty and, occasionally, country (see convention, default).  And words and symbols can change their meanings from place to place within the same mathematical discourse (see scope).

This article mostly provides pointers to other articles in abstractmath.org that give more details about the ideas.

Conventions

A convention in mathematical discourse is notation or terminology used with a special meaning in certain contexts or in certain fields. Articles and books in a specialty do not always clue you in on these conventions.

Some conventions are nearly universal in math.

Example 1

The use of “if” to mean “if and only if” in a definition is a convention. More about this here. This is a hidden definition by cases. “Hidden” means that no one tells the students, except for Susanna Epp and me.

Example 2

Constants or parameters are conventionally denoted by a, b, … , functions by f, g, … and variables by x, y,…. More.

Example 3

Referring to a group (or other mathematical structure) and its underlying set by the same name is a convention.  This is an example of both synecdoche and context-sensitive.

Example 4

The meaning of ${{\sin }^{n}}x$ in many calculus books is:

  • The inverse sine (arcsin) if $n=-1$.
  • The mult­iplica­tive power for positive $n$; in other words, ${{\sin }^{n}}x={{(\sin x)}^{n}}$ if $n\ne -1$.

This, like Example 1, is a definition by cases. Unlike Example 1, calculus books often make it explicit. Explicit or not, this usage is an abomination.

Some conventions are pervasive among math­ematicians but different conventions hold in other subjects that use mathematics.

  • Scientists and engineers may regard a truncated decimal such as 0.252 as an approximation, but a mathematician is likely to read it as an exact rational number, namely $\frac{252}{1000}$.
  • In most computer languages a distinction is made between real numbers and integers;
    42 would be an integer but 42.0 would be a real number.  Older mathematicians may not know this.
  • Mathematicians use i to denote the imaginary unit. In electrical engineering it is commonly denoted j instead, a fact that many mathematicians are un­aware of. I first learned about it when a student asked me if i was the same as j.

Conventions may vary by country.

  • In France and possibly other countries schools may use “positive” to mean “nonnegative”, so that zero is positive. 
  • In the secondary schools in some places, the value of sin x may be computed clockwise starting at (0,1)  instead of counterclockwise starting at (1,0).  I have heard this from students. 

Conventions may vary by specialty within math.

Field” and “log” are examples. 

Defaults

An interface to a computer program may have many possible choices for the user to make. In most cases, the interface will use certain choices automatically when the user doesn’t specify them.  One says the program defaults to those choices.  

Examples

  • A word processing program may default to justified paragraphs and insert mode, but allow you to pick ragged right or typeover mode.
  • I have spent a lot of time in both Minne­sota and Georgia and the remarks about skiing are based on my own observation. But these usages are not absolute. Some affluent Geor­gians may refer to snow skiing as “skiing”, for example, and this usage can result in a put-down if the hearer thinks they are talking about water skiing. One wonders where the boundary line is. Perhaps people in Kentucky are confused on the issue.

  • There is a sense in which the word “ski” defaults to snow skiing in Minnesota and to water skiing in Georgia.
  • “CSU” defaults to Cleveland State University in northern Ohio and to Colorado State University in parts of the west.

Math language behaves in this way, too.

Default usage in mathematical discourse

Symbols

  • In high school, $\pi$ refers by default to the ratio of the circumference of a circle to its diameter.  Students are often quite surprised when they get to abstract math courses and discover the many other meanings of $\pi $ (see here).
  • Recently authors in the popular literature seem to think that $\phi$ (phi) defaults to the golden ratio.  In fact, a search through the research literature shows very few hits for $\phi$ meaning the golden ratio: in other words, it usually means something else. 
  • The set $\mathbb{R}$ of real numbers has many different group structures defined on it but “The group $\mathbb{R}$” essentially always means that the group operation is ordinary addition.  In other words, “$\mathbb{R}$” as a group defaults to +.  Analogous remarks apply to “the field $\mathbb{R}$”. 
  • In informal conversation among many analysts, functions are continuous by default.
  • It used to be the case that in informal conversations among topologists, “group” defaulted to Abelian group. I don’t know whether that is still true or not.

Remark

This meaning of “default” has made it into dictionaries only since around 1960 (see the Wikipedia entry). This usage does not carry a derogatory connotation.   In abstractmath.org I am using the word to mean a special type of convention that imposes a choice of parameter, so that it is a special case of both “convention” and “suppression of parameters”.

Scope

Both mathematical English and the symbolic language have a feature that is uncommon in ordinary spoken or written English:  The meaning of a phrase or a symbolic expression can be different in different parts of the discourse.   The portion of the text in which a particular meaning is in effect is called the scope of the meaning.  This is accomplished in several ways.

Explicit statement

Examples

  • “In this paper, all groups are abelian”.  This means that every instance of the word “group” or any symbol denoting a group the group is constrained to be abelian.   The scope in this case is the whole paper.   See assumption.
  • “Suppose (or “let” or “assume”) $n$ is divisible by $4$”. Before this statement, you could not assume $n$ is divisible by $4$. Now you can, until the end of the current paragraph or section.

Definition

The definition of a word, phrase or symbol sets its meaning.  If the word definition is used and the scope is not given explicitly, it is probably the whole discourse.

Example

“Definition.  An integer is even if it is divisible by 2.”  This is marked as a definition, so it establishes the meaning of the word “even” (when applied to an integer) for the rest of the text. 

If

Used in modus ponens (see here) and (along with let, usually “now let…”) in proof by cases.

Example(modus ponens)

Suppose you want to prove that if an integer $n$ is divisible by $4$ then it is even. To show that it is even you must show that it is divisible by $2$. So you write:

  • “Let $n$ be divisible by $4$. That means $n=4k$ for some integer $k$. But then $n=2(2k)$, so $n$ is even by definition.”

Now if you start a new paragraph with something like “For any integer $n\ldots$” you can no longer assume $n$ is divisible by $4$.

Example (proof by cases)

Theorem: For all integers $n$, $n^2+n+1$ is odd.

Definitions:

  • “$n$ is even” means that $n=2s$ for some integer $s$.
  • “$n$ is odd” means that $n=2t+1$ for some integer $t$.

Proof:

  • Suppose $n$ is even. Then

    \[\begin{align*}
    n^2+n+1&=4s^2+2s+1\\
    &=2(2s^2+s)+1\\
    &=2(\text{something})+1
    \end{align*}\]

    so $n^2+n+1$ is odd. (See Zooming and Chunking.)

  • Now suppose $n$ is odd. Then

    \[\begin{align*}
    n^2+n+1&=(2t+1)^2+2t+1+1\\
    &=4t^2+4t+1+2t+1+1\\
    &=2(2t^2+3t)+3\\
    &=2(2t^2+3t+1)+1\\
    &=2(\text{something})+1
    \end{align*}\]

    So $n^2+n+1$ is odd.

Remark

The proof I just gave uses only the definition of even and odd and some high school algebra. Some simple grade-school facts about even and odd numbers are:

  • Even plus even is even.
  • Odd plus odd is even.
  • Even times even is even.
  • Odd times odd is odd.

Put these facts together and you get a nicer proof (I think anyway): $n^2+n$ is even, so when you add $1$ to it you must get an odd number.

Bound variables

A variable is bound if it is in the scope of an integral, quantifier, summation, or other binding operators.  More here.

Example

Consider this text:

Exercise: Show that for all real numbers $x$, it is true that $x^2\geq0$. Proof: Let $x=-2$. Then $x^2=(-2)^2=4$ which is greater than $0$. End of proof.”

The problem with that text is that in the statement, “For all real numbers $x$, it is true that $x^2\geq0$”, $x$ is a bound variable. It is bound by the universal quantifier “for all” which means that $x$ can be any real number whatever. But in the next sentence, the meaning of $x$ is changed by the assumption that $x=-2$. So the statement that $x\geq0$ only applies to $-2$. As a result the proof does not cover all cases.

Many students just beginning to learn to do proofs make this mistake. Fellow students who are a little further along may be astonished that someone would write something like that paragraph and might sneer at them. But this common mistake does not deserve a sneer, it deserves an explanation. This is an example of the ratchet effect.

Variable meaning in natural language

Meanings commonly vary in natural language because of conventions and defaults. But varying in scope during a conversation seems to me uncommon.

It does occur in games. In Skat and Bridge, the meaning of “trump” changes from hand to hand. The meaning of “strike” in a baseball game changes according to context: If the current batter has already had fewer than two strikes, a foul is a strike, but not otherwise.

I have not come up with non-game examples, and anyway games are played by rules that are suspiciously like mathematical axioms. Perhaps you can think of some non-game occasions in which meaning is determined by scoping that I have overlooked.

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 2.5 License.


Send to Kindle

Thinking about thought

Modules of the brain

Cognitive neuroscientists have taken the point of view that concepts, memories, words, and so on are represented in the brain by physical systems: perhaps they are individual neurons, or systems of structures, or even waves of discharges. In my previous writing I have referred to these as modules, and I will do that here. Each module is connected to many other modules that encode various properties of the concept, thoughts and memories that occur when you think of that concept (in other words stimulate the module), and so on.

How these modules implement the way we think and perceive the world is not well understood and forms a major research task of cognitive neuroscience. The fact that they are implemented in physical systems in the brain gives us a new way of thinking about thought and perception.

Examples

The grandmother module

There is a module in your brain representing the concept of grandmother. It is likely to be connected to other modules representing your actual grandmothers if you have any memory of them. These modules are connected to many others — memories (if you knew them), other relatives related to them, incidents in their lives that you were told about, and so on. Even if you don’t have any memory of them, you have a module representing the fact that you don’t have any memory of them, and maybe modules explaining why you don’t.

Each different aspect related to “grandmother” belongs to a separate module somehow connected to the grandmother module. That may be hard to believe, but the human brain has over eighty billion neurons.

A particular module connected with math

There is a module in your brain connected with the number $42$. That module has many connections to things you know about it, such as its factorization, the fact that it is an integer, and so on. The module may also have connections to a module concerning the attitude that $42$ is the Answer. If it does, that module may have a connection with the module representing Douglas Adams. He was physically outside your body, but is the number $42$ outside your body?

That has a decidedly complicated answer. The number $42$ exists in a network of brains which communicate with each other and share some ideas about properties of $42$. So it exists socially. This social existence occasionally changes your knowledge of the properties of $42$ and in particular may make you realize that you were wrong about some of its aspects. (Perhaps you once thought it was $7\times 8$.)

This example suggests how I have been using the module idea to explain how we think about math.

A new metaphor for understanding thinking

I am proposing to use the idea of module as a metaphor for thinking about thinking. I believe that it clarifies a lot of the confusion people have about the relation between thinking and the real world. In particular it clarifies why we think of mathematical objects as if they were real-world objects (see Modules and math below.)

I am explicitly proposing this metaphor as a successor to previous metaphors drawn from science to explain things. For example when machines became useful in the 18th century many naturalists used metaphors such as the Universe is a Machine or the Body is a Machine as a way of understanding the world. In the 20th century we fell heavily for the metaphor that the Mind Is A Computer (or Program). Both the 18th century and the 20th century metaphors (in my opinion) improved our understanding of things, even though they both fell short in many ways.

In no way am I claiming that the ways of thinking I am pushing have anything but a rough resemblance to current neuroscientists’ thinking. Even so, further discoveries in neuroscience may give us even more insight into thinking that they do now. Unless at some point something goes awry and we have to, ahem, think differently again.

For thousands of years, new scientific theories have been giving us new metaphors for thinking about life, the universe and everything. I am saying here is a new apple on the tree of knowledge; let’s eat it.

The rest of this post elaborates my proposed metaphor. Like any metaphor, it gets some things right and some wrong, and my explanations of how it works are no doubt full of errors and dubious ideas. Nevertheless, I think it is worth thinking about thought using these ideas with the usual correction process that happens in society with new metaphors.

Our theory of the world

We don’t have any direct perception of the “real world”; we have only the sensations we get from those parts of our body which sense things in the world. These sensations are organized by our brain into a theory of the world.

  • The theory of the world says that the world is “out there” and that our sensory units give us information about it. We are directly aware of our experiences because they are a function of our brain. That the experiences (many of them) originate from outside our body is a very plausible theory generated by our brain on the bases of these experience.
  • The theory is generated by our brain in a way that we cannot observe and is out of our control (mostly). We see a table and we know we can see in in daytime but not when it is dark and we can bump into it, which causes experiences to occur via our touch and sound facilities. But the concept of “table” and the fact that we decide something is or is not a table takes place in our brain, not “out there”.
  • We do make some conscious amendments to the theory. For example, we “know” the sky is not a blue shell around our world, although it looks like it. That we think of the apparent blue surface as an artifact of our vision processing comes about through conscious reasoning. But most of how we understand the world comes about subconsciously.
  • Our brain (and the rest of our body) does an enormous amount of processing to create the view of the world that we have. Visual perception requires a huge amount of processing in our brain and the other sensory methods we use also undergo a lot of processing, but not as much as vision.
  • The theory of the world organizes a lot of what we experience as interaction with physical objects. We perceive physical objects as having properties such as persistence, changing with time, and so on. Our brains create the concept of physical object and the properties of persistence, changing, and particular properties an individual object might have.
  • We think of the Mississippi River as an object that is many years old even though none of its current molecules are the same as were in the river a decade ago. How is it one thing when its substance is constantly changing? This is a famous and ancient conundrum which becomes a non-problem if you realize that the “object” is created inside your brain and imposed by your thinking on your understanding of the world.
  • The notion that semantics is a connection between our brain and the outside world has also become a philosophical conundrum that vanishes if we understand that the connection with the outside world exists entirely inside our theory, which is entirely within our brain.

Society

Our brain also has a theory of society We are immersed in a world of people, that we have close connections with some of them and more distant connections with many other via speech, stories, reading and various kinds of long-distance communications.

  • We associate with individual people, in our family and with our friend. The communication is not just through speech: it involves vision heavily (seeing what The Other is thinking) and probably through pheromones, among other channels. For one perspective on vision, see The vision revolution, by Mark Changizi. (Review)
  • We consciously and unconsciously absorb ideas and attitudes (cultural and otherwise) from the people around us, especially including the adults and children we grow up with. In this way we are heavily embedded in the social world, which creates our point of view and attitudes by our observation and experience and presumably via memes. An example is the widespread recent changes in attitudes in the USA concerning gay marriage.
  • The theory of society seems to me to be a mechanism in our brain that is separate from our theory of the physical world, but which interacts with it. But it may be that it is better to regard the two theories as modules in one big theory.

Modules and math

The module associated with a math object is connected to many other modules, some of which have nothing to do with math.

  • For example, they may have have connections to our sensory organs. We may get a physical feeling that the parabola $y=x^2$ is going “up” as $x$ “moves to the right”. The mirror neurons in our brain that “feel” this are connected to our “parabola $y=x^2$” module. (See Constructivism and Platonism and the posts it links to.)
  • I tend to think of math objects as “things”. Every time I investigate the number $111$, it turns out to be $3\times37$. Every time I investigate the alternating group on $6$ letters it is simple. If I prove a new theorem it feels as if I have discovered the theorem. So math objects are out there and persistent.
  • If some math calculation does not give the same answer the second time I frequently find that I made a mistake. So math facts are consistent.
  • There is presumably a module that recognizes that something is “out there” when I have repeatable and consistent experiences with it. The feeling originates in a brain arranged to detect consistent behavior. The feeling is not evidence that math objects exist in some ideal space. In this way, my proposed new way of thinking about thought abolishes all the problems with Platonism.
  • If I think of two groups that are isomorphic (for example the cyclic group of order $3$ and the alternating group of rank $3$), I picture them as in two different places with a connection between the two isomorphic ones. This phenomenon is presumably connected with modules that respond to seeing physical objects and carrying with them a sense of where they are (two different places). This is a strategy my brain uses to think about objects without having to name them, using the mechanism already built in to think about two things in different places.

Acknowledgments

Many of the ideas in this post come from my previous writing, listed in the references. This post was also inspired by ideas from Chomsky, Jackendoff (particularly Chapter 9), the Scientific American article Brain cells for Grandmother by Quian Quiroga, Fried and Koch, and the papers by Ernest and Hersh.


References

Previous posts

In reverse chronological order

Abstractmath articles

Other sources

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 2.5 License.


Send to Kindle

Dysfunctions in doing math II

This post continues Dysfunctions in doing math I, with some more revisions to the article in abstractmath on dysfunctions.

Elements

First Myth

MYTH: There are two kinds of mathematical objects: "sets" and "elements".

This is the TRUTH: Being an element is not a property that some math objects have and others don’t. “Element” is a binary relation; it relates an object and a set. So “$3$ is an element” means nothing, but “$3$ is an element of the set of integers” is true and relates two mathematical objects to each other.


Any mathematical object can be an element of a set
In particular, any set can be the
element of another set.

Examples

  • The number $42$ is not a set, but it is an element of the set $\{5,10,41,42,-30\}$.
  • The sine function is not a set, but it is an element of the set of all differentiable functions defined on the real numbers.
  • The set $\{1,2,5\}$ is a set, but it is also an element of the set $\left\{\{1,2,5\},\{3,5\}, \emptyset,\{42\}\right\}$. It is not an element of the set $\{1,2,3,4,5\}$.

If you find these examples confusing, read this.

Second Myth

MYTH: The empty set is an element of every set.

This is the TRUTH:
The empty set is an element of a set $S$ if and only if the definition of $S$ requires it to be an element.

Examples

  • The empty set is not an element of every set. It is not an element of the set $\{2,3\}$ for example; that set has only the elements $2$ and $3$.
  • The empty set is an element of the set $\{2,3,\emptyset\}$.
  • The empty set is a subset of every set.

Other ways to misunderstand sets

The myths just listed are explicit; students tell them to each other. The articles below tell you about other misunderstanding about sets which are usually subconscious.

Enthymeme

An enthymeme is an argument based partly on unexpressed beliefs. Beginners at the art of writing proofs often produce enthymemes.

Example

In the process of showing that the intersection of two equivalence relations $E$ and $E’$ is also an equivalence relation, a student may write “$E\cap E’$ is transitive because $E$ and $E’$ are transitive.”

  • This is an enthymeme; it omits stating, much less proving, that the intersection of transitive relations is transitive.
  • The student may “know” that it is obvious that the intersection of transitive relations is transitive, having never considered the similar question of the union of transitive relations.
  • It is very possible that the student possesses (probably subconsciously) a malrule to the effect that for any property $P$ the union or intersection of relations with property $P$ also has property $P$.
  • The instructor very possibly suspects this. For some students, of course, the suspicion will be unjustified, but for which ones?
  • This sort of thing is a frequent source of tension between student and instructor: “Why did you take points off because I assumed the intersection of transitive relations is transitive? It’s true!”

Malrule

A malrule is an incorrect rule for syntactic transformation of a mathematical expression.

Example

The malrule $\sqrt{x+y}=\sqrt{x}+\sqrt{y}$ invented by algebra students may come from the pattern given by the distributive law $a(x+y)=ax+ay$. The malrule invented by many first year calculus students that transforms $\frac{d(uv)}{dx}$ to $\frac{du}{dx}\frac{dv}{dx}$ may have been generated by extrapolating from the correct rule
\[\frac{d(u+v)}{dx}=\frac{du}{dx}+\frac{dv}{dx}\] by changing addition to multiplication. Both are examples of “every operation is linear”, which students want desperately to be true, although they are not aware of it.

Existential bigamy

Beginning abstract math students sometimes make a particular type of mistake that occurs in connection with a property $P$ of an mathematical object $x$ that is defined by requiring the existence of an item $y$ with a certain relationship to $x$. When students have a proof that assumes that there are two items $x$ and $x’$ with property $P$, they sometimes assume that the same $y$ serves for both of them. This mistake is called existential bigamy: The fact that Muriel and Bertha are both married (there is a person to whom Muriel is married and there is a person to whom Bertha is married) doesn’t mean they are married to the same person.

Example

Let $m$ and $n$ be integers. By definition, $m$ divides $n$ if there is an integer $q$ such that $n=qm$. Suppose you are asked to prove that if $m$ divides both $n$ and $p$, then $m$ divides $n+p$. If you begin the proof by saying, “Let $n = qm$ and $p = qm$…” then you are committing existential bigamy.

You need to begin the proof this way: “Let $n = qm$ and $p = q’m…”$

Send to Kindle

Dysfunctions in doing math I

I am in the middle of revising the article in abstractmath.org on dysfunctional attitudes and behaviors in doing math. Here are three of the sections I have finished.

Misuse of analogy

When William Rowan Hamilton was trying to understand the new type of number called quaternions (MW, Wik) that he invented, he assumed by analogy that like other numbers, quaternion multiplication was commutative. It was a major revelation to him that they were not commutative.

Analogy may suggest new theorems or ways of doing things. But it is fallible. What happens particularly often in abstract math is applying a rule to a situation where it is not appropriate. This is an easy trap to fall into when the notation in two different cases has the same form; that is an example of formal analogy.

Matrix multiplication

Matrix multiplication is not commutative

If $r$ and $s$ are real numbers then the products $rs$ and $sr$ are always the same number. In other words, multiplication of real numbers is commutative : $rs = sr$ for all real numbers $r$ and $s$.

The product of two matrices $M $and $N$ is written $MN$, just as for numbers. But matrix multiplication is not commutative. For example,
\[\left(
\begin{array}{cc}
1 & 2 \\
3 & 4\\
\end{array}
\right)
\left(
\begin{array}{cc}
3 & 1 \\
3 &2\\
\end{array}
\right)
=
\left(
\begin{array}{cc}
9 & 5\\
21 & 11 \\
\end{array}
\right)\]
but
\[\left(
\begin{array}{cc}
3 & 1 \\
3 & 2\\
\end{array}
\right)
\left(\begin{array}{cc}
1 & 2 \\
3 & 4\\
\end{array}
\right)
=
\left(
\begin{array}{cc}
6 & 10\\
91 & 14 \\
\end{array}
\right)\]
Because $rs = sr$ for numbers, the formal similarity of the notation suggests $MN$ = $NM$, which is wrong.

This means you can’t blindly manipulate $MNM$ to become $M^2N$. More generally, a law such as $(MN)^n=M^nN^n$ is not correct when $M$ and $N$ are matrices.


You must understand the meanings
of the symbols you manipulate.

The product of two nonzero matrices can be 0

If the product of two numbers is 0, then one or both of the numbers is zero. But that is not true for matrix multiplication:
\[\left(
\begin{array}{cc}
-2 & 2 \\
-1 & 1\\
\end{array}
\right)
\left(
\begin{array}{cc}
1 & 1 \\
1 &1\\
\end{array}
\right)
=
\left(
\begin{array}{cc}
0 &0\\
0 & 0 \\
\end{array}
\right)\]

Canceling sine

  • Beginning calculus students have already learned algebra.
  • They have learned that an expression such as $xy$ means $x$ times $y$.
  • They have learned to cancel like terms in a quotient, so that for example \[\frac{3x}{3y}=\frac{x}{y}\]
  • They have learned to write the value of a function $f$ at the input $x$ by $f(x)$.
  • They have seen people write $\sin x$ instead of $\sin(x)$ but have never really thought about it.
  • So they write \[\frac{\sin x}{\sin y}=\frac{x}{y}\]

This happens fairly often in freshman calculus classes. But you wouldn’t do that, would you?

Boundary values of definitions

Definitions are usually inclusive

Definitions of math concepts usually include the special cases they generalize.

Examples

  • A square is a special case of rectangle. As far as I know texts that define “rectangle” include squares in the definition. Thus a square is a rectangle.
  • A straight line is a curve.
  • A group is a semigroup.
  • An integer is a real number. (But not always in computing languages — see here.)

But not always

  • The axioms of a field include a bunch of axioms that a one-element set satisfies, plus a special axiom that does nothing but exclude the one-element set. So a field has to have at least two elements, and that fact does not follow from the other axioms.
  • Boolean algebras are usually defined that way, too, but not always. MathWorld gives several definitions of Boolean algebra that disagree on this point.

When boundary values are not special cases

Definitions may or may not include other types of boundary values.

Examples

  • If $S$ is a set, it is a subset of itself. The empty set is also a subset of $S$.
  • Similarly the divisors of $6$ are $-6$, $-3$, $-2$, $-1$, $1$, $2$, $3$ and $6$, not just $2$ and $3$ and not just $1$, $2$, $3$ and $6$ (there are two different boundaries here).

But …

  • The positive real numbers include everything bigger than $0$, but not $0$. ( Note).

Blunders

A definition that includes such special cases may be called inclusive; otherwise it is exclusive. People new to abstract math very commonly use words defined inclusively as if their definition was exclusive.

  • They say things such as “That’s not a rectangle, it is a square!” and “Is that a group or a semigroup?”
  • They object if you say “Consider the complex number $\pi $.”

This appears to be natural linguistic behavior. Even so, math is picky-picky: a square is a rectangle, a group is a semigroup and $\pi$ is a complex number (of course, it is also a real number).

Co-intimidator

  • You attend a math lecture and the speaker starts talking about things you never heard of.
  • Your fellow students babble at you about manifolds and tensors and you thought they were car parts and lamps.
  • You suspect your professor is deliberately talking over your head to put you down.
  • You suspect your friends are trying to make you believe they are much smarter than you are.
  • You suspect your friends are smarter than you are.

There are two possibilities:

  • They are not trying to intimidate you (most common).
  • They are deliberately setting out to intimidate you with their arcane knowledge so you will know what a worm you are. (There are people like that.)

Another possibility, which can overlap with the two above, is:

  • You expect to be intimidated. You may be what might be called a co-intimidator, Similar to the way someone who is codependent wants some other person to be dependent on them. (This is not like the “co” in category theory: “product” and “coproduct” have a symmetric relationship with each other, but the co-intimidator relation is asymmetric.)

There are many ways to get around being intimidated.

  • Ask “What the heck is a manifold?”
  • (In a lecture where it might be imprudent or impractical to ask) Write down what they say, then later ask a friend or look it up.
  • Most teachers like to be asked to explain something. Yes, I know some professors repeatedly put down people. Change sections! If you can’t, live with it! Not knowing something says nothing bad about you.

And remember:


If you don’t know something
probably many other students don’t know it either.

Send to Kindle

A proof by diagram chasing



In Rigorous proofs, I went through the details of a medium-easy epsilon-delta proof in great detail as a way of showing what is hidden by the wording of the proof. In this post, I will do the same for an easy diagram-chasing proof in category theory. This theorem is stated and proved in Category Theory for Computing Science, page 365, but the proof I give here maximizes the diagram-chasing as a way of illustrating the points I want to make.

Theorem (J. Lambek) Let $F$ be a functor from a category to itself and let $\alpha:Fa\to a$ be an algebra for $F$ which is initial. Then $\alpha$ is an isomorphism.

Proof

  1. $F\alpha:FFa\to Fa$ is also an $F$-algebra.
  2. Initiality means that there is a unique algebra morphism $\eta:a\to Fa$ from $\alpha:Fa\to a$ to $F\alpha:FFa\to Fa$ for which this diagram commutes:



  3. To that diagram we can adjoin another (obviously) commutative square:



  4. Then the outside rectangle in the diagram above also commutes.
  5. This means that $\alpha\circ\eta:a\to a$ is an $F$-algebra morphism from $\alpha:Fa\to a$ to itself.
  6. Another such $F$-algebra morphism is $\text{id}_{A}$.
  7. Initiality of $\alpha$ means that the diagram below commutes:



  8. Because the upper bow and the left square both commute we are justified in inserting a diagonal arrow as below.



  9. Now we can read off the diagram that $F\alpha\circ F(\eta)=\text{id}_{Fa}$ and $\eta\circ\alpha=\text{id}_a$. By definition, then, $\eta$ is a two-sided inverse to $\alpha$, so $\alpha$ is an isomorphism.

Analysis of the proof

This is an analysis of the proof showing what is not mentioned in the proof, similar to the analysis in Rigorous proofs.

  • An $F$-algebra is any arrow of the form $\alpha:Fa\to a$. This definition directly verifies statement (1). You do need to know the definition of “functor” and that the notation $Fa$ means $F(a)$ and $FFa$ means $F(F(a))$.
  • When I am chasing diagrams, I visualize the commutativity of the diagram in (2) by thinking of the red path and the blue path as having the same composites in this graph:





    In other words, $F\alpha\circ F\eta=\eta\circ\alpha$. Notice that the diagram carries all the domain and codomain information for the arrows, whereas the formula “$F\alpha\circ F\eta=\eta\circ\alpha$” requires you to hold the domains and codomains in your head.

  • (Definition of morphism of $F$-algebra) The reader needs to know that a morphism of $F$ algebras is any arrow $\delta:c\to d$ for which




    commutes.
  • (Definition of initial $F$-algebra) $\alpha$ is an initial $F$-algebra means that for any algebra $\beta:Fb\to b$, there is a unique arrow $\delta$ for which the diagram above commutes.
  • (2) is justified by the last two definitions.
  • Pulling a “rabbit out of a hat” in a proof means introducing something that is obviously correct with no motivation, and then checking that it results in a proof. Step (9) in the proof given in Rigorous proofs has an example of adding zero cleverly. It is completely OK to pull a rabbit out of a hat in a proof, as long as the result is correct, but it makes students furious.
  • In statement (3) of the proof we are considering here, the rabbit is the trivially commutative diagram that is adjoined on the right of the diagram from (2).
  • Statement (4) uses a fact known to all diagram chasers: Two joined commutative squares make the outside rectangle commute. You can visualize this by seeing that the three red paths shown below all have the same composite. When I am chasing a complicated diagram I trace the various paths with my finger, or in my head.



    You could also show it by pointing out that $\alpha\circ F\alpha\circ F\eta=\alpha\circ\eta\circ\alpha$, but to check that I think most of us would go back and look at the diagram in (3) to see why it is true. Why not work directly with the diagram?

  • The definition of initiality requires that there be only one $F$-algebra morphism from $\alpha:Fa\to a$ to itself. This means that the upper and lower bows in (7) commute.
  • The diagonal identity arrow in (8) is justified by the fact that the upper bow is exactly the same diagram as the upper triangular diagram in (8). It follows that the upper triangle in (8) commutes. I visualize this as moving the bow down and to the left with the upper left node $Fa$ as a hinge, so that the two triangles coincide. (It needs to be flipped, too.) I should make an interactive diagram that shows this.
  • The lower triangle in (8) also commutes because the square in (2) is given to be commutative.
  • (Definition of isomorphism in a category) An arrow $f:a\to b$ in a category is an isomorphism if there is an arrow $g:b\to a$ for which these diagrams commute:


    xx


    This justifies statement (9).

Remark: I have been profligate in using as many diagrams as I want because this can be seen on a screen instead of on paper. That and the fact that much more data about domains and codomains are visible because I am using diagrams instead of equations involving composition means that the proof requires the readers to carry much less invisible data in their heads.

Send to Kindle

Rigorous proofs

Rich and rigorous

When we try to understand a math statement, we visualize what the statement says using metaphors, images and kinetic feelings to feel how it is true, or to suggest that the statement is not true.

If we are convinced that it is true, we may then want to prove it. Doing that involves pitching out all the lovely pictures and metaphors and gestures and treating the mathematical objects involved in the proof as static and inert. “Static” means the object does not change. “Inert” means that it does not affect anything else. I am saying how we think about math objects for the purpose of rigorous proof. I am not saying anything about “what math objects are”.

In this post I give a detailed example of a proof of the rigorous sort.

Example

Informal statement

First, I’ll describe this example in typical spoken mathematical English. Suppose you suspect that the following statement is true:

Claim: Let $f(x)$ be a differentiable function with $f'(a)=0$.
Going from left to right, suppose the graph of $f(x)$ goes UP before $x$ reaches $a$ and then DOWN for $x$ to the right of $a$
Then $a$ has to be a local maximum of the function.

This claim is written in informal math English. Mathematicians talk like that a lot. In this example they will probably wave their hands around in swoops.

The language used is an attempt to get a feeling for the graph going up to $(a,f(a))$ and then falling away from it. It uses two different metaphors for $x\lt a$ and $x\gt a$. I suspect that most of us would want to clean that up a bit even in informal writing.

A more formal statement

Theorem: Let $f$ be a real valued differentiable function defined on an open interval $R$. Let $a$ be a number in $R$ for which $f'(a)=0$. Suppose that for all $x\in R$, $f$ increases for $x\lt a$ and decreases for $x\gt a$. Then $f(a)$ is a maximum of $f$ in $R$.

Proof

  1. By definition of derivative, \[\lim_{x\to a}\frac{f(x)-f(a)}{x-a}=0.\]
  2. By definition of limit, then for any positive $\epsilon$ there is a positive $\delta$ for which if $0\lt|x-a|\lt\delta$ then \[\left|\frac{f(x)-f(a)}{x-a}\right|\lt\epsilon.\]
  3. By requiring that $\delta\lt 1$, it follows from (2) that for any positive $\epsilon$, there is a positive $\delta$ for which if $0\lt|x-a|\lt\delta$, then $|f(x)-f(a)|\lt\epsilon$.
  4. “$f$ increases for $x\lt a$” means that if $x$ and $y$ are numbers in $R$ and $x\lt y\lt a$, then $f(x)\lt f(y)$.
  5. “$f$ decreases for $x\gt a$” means that if $x$ and $y$ are numbers in $R$ and $a\lt x\lt y$, then $f(x)\gt f(y)$.
  6. “$f(a)$ is a maximum of $f$ in $R$” means that for $x\in R$, if $x\neq a$, then $f(x)\lt f(a)$.
  7. Suppose that $x\in R$ and $x\lt a$. (The case that $x\gt a$ has a symmetric proof.)
  8. Given $\epsilon\gt0$ with $\delta$ as given by (3), choose $y\in R$ such that $x\lt y\lt a$ and $|f(y)-f(a)|\lt\epsilon$.
  9. By (4), $f(x)\lt f(y)$. So by (8), \[\begin{align*}
    f(x)-f(a)&=
    f(x)-f(y)+f(y)-f(a)\\ &\lt f(y)-f(a)\\ &\leq|f(y)-f(a)|\lt\epsilon\end{align*}\]
    so that $f(x)\lt f(a)+\epsilon$. By inserting “$-f(y)+f(y)$” into the second formula, I am “adding zero cleverly”, an example of pulling a rabbit out of a hat. Students hate that. But you have to live with it; as long as the statements following are correct, it makes a valid proof. Rabbit-out-of-a-hat doesn’t make a proof wrong, but it does make you wonder how the author thought of it. Live with it.
  10. Since (9) is true for all positive $\epsilon$, it follows that $f(x)\leq f(a)$.
  11. By the same argument as that leading up to (10), $f(\frac{x-a}{2})\leq f(a)$.
  12. Since $f(x)\lt f(\frac{x-a}{2})$, it follows that $f(x)\lt f(a)$ as required.

About the proof

This proof is intended to be a typical “rigorous” proof. I suspect it tends to be more rigorous than most mathematicians would find necessary,

Extensionality

The point about “rigor”, about insisting that the objects be static and inert, is that this causes symbols and expression to retain the same meaning throughout the text. This is one aspect of extensionality.

Of course, some of the symbols denote variables, or variable objects. This does not mean they are “varying”. I am taking this point of view: A variable refers to a math object but you don’t know what it is. Constraints such as $x\lt a$ rule out some possible values but don’t generally tell you exactly what $x$ is. There is more about this in Variable Objects

The idea in (6), for example, is that $y$ denotes a real number. You don’t know which number it is, but you do know some facts about it: $x\lt y\lt a$, $|f(y)\lt f(a)|\lt\epsilon$ and so on. Similarly you don’t know what function $f$ is, but you do know some facts about it: It is differentiable, for example, and $f'(a)=0$.

My statement that the variables aren’t “varying” means specifically that each unbound occurrence of the variable refers to the same value as any other occurrence, unless some intervening remark changes its meaning. For example, the references to $x$ in (7) through (10) refer to the same value it has in (6), and (10), in particular, constitutes a statement that the claim about $x$ is correct.

Checkability

The elimination of metaphors that lets the proof achieve rigor is part of a plan in the back of the mind of at least some mathematicians who write proofs. The idea is that the proof be totally checkable:

  • Every statement in the proof has a semantics, a meaning, that is invariant (given the remark about variables above).
  • Each statement is justified by some of the previous statements. This justification is given by two systems that the reader is supposed to understand.
  • One system is the rules of symbol manipulation that are applied to the symbolic expressions, ordinary algebra, and higher-level manipulations used in particular branches of math.
  • The other system consists of the rules of logical reasoning that justify the claims that each statement follows logically from preceding ones.
  • These two systems are really branches of one system, the entire system of math computation and reasoning. It can be obscure which system is being used in a particular step.

Suppression of reasons

The logical and symbolic-manipulation reasons justifying the deductions may not be made completely explicit. In fact, for many steps they may not be mentioned at all, and for others, one or two phrases may be used to give a hint. This is standard practice in writing “rigorous” proofs. That is a descriptive statement, made without criticism. Giving all the reasons is essentially impossible without a computer.

I am aware that some work has been done to write proof checkers that can read a theorem like the one we are considering, stated in natural language, and correctly implement the semantics I have described in this list. I don’t know of any references to such work and would appreciate information about it.

Suppression of reasons makes it difficult to mechanically check a proof written in this standard “rigorous” writing style. Basically, you must be at at least the graduate student level to be able to make sense of what is said, and even experienced math research people find it difficult to read a paper in a very different field. Writing the proof so that it can be checked by a proof checker requires understanding of the same sort, and it typically makes the proof much longer.

One hopeful new approach is to write the proofs using homotopy type theory. The pioneers in that field report that the proofs don’t expand nearly as much as is required by first order logic.

Examples of suppression

Here are many examples of suppression in the $\epsilon$-$\delta$ proof above. This is intended to raise your consciousness concerning how nearly opaque writing in math research is to anyone but the cognoscenti.

  • The first sentence of the theorem names $R$ and $f$ and puts constraints on them that can be used to justify statements in the proof. The naming of $R$ and $f$ requires that every occurrence of $R$ in the proof refers to the same mathematical object, and similarly for $f$.

Remark: The savvy reader “knows” the facts stated in (a), possibly entirely subconsciously. For many of us there is no conscious thought of constraints and permanence of naming. My goal is to convince those who teach beginning abstract math course to become conscious of these phenomena. This remark applies to all the following items as well.

  • The second sentence gives $a$ a specific meaning that will be maintained throughout the proof. It also puts constraints on $a$ and an additional constraint on $f$.
  • The third sentence gives a constraint on $R$, $f$ and $a$. It does not give a constraint on $x$, which is a bound variable. Nor does it name $x$ as a specific number with the same meaning in the rest of the proof. (That happens later).
  • The fact that the first three sentences impose constraints on various objects is signaled by the fact that the sentences are introduced by “let” and “suppose”. The savvy reader knows this.
  • The fourth sentence announces that “$f(a)$ is a maximum of $f$ in $R$” is a consequence of the constraints imposed by the preceding three sentences. (In other words, it follows from the context.) This is signaled by the word “then”.
  • The fact that the paragraph is labeled “Theorem” informs us that the fourth sentence is therefore a statement of what is to be proved, and that every constraint imposed by the first three sentences of the Theorem may be used in the proof.
  • In the proof, statements (1), (4), (5) and (6) rewrite the statements in the theorem according to the definitions of the words involved, namely “derivative: “increases”, “decreases” and “maximum”. Rewriting statements according to the definitions of the words involved is a fundamental method for starting a proof.
  • (2) follows from (1) by rewriting using the definition of “limit”. Note that pattern-matching against the definition of limit requires understanding that there is a zero inside the absolute value signs that is not written down. Could a computer proof-checker handle that?
  • (3) follows from (2). The reader or proof-checker must:
    • Know that it is acceptable to put an upper bound on $\delta$ in the definition of limit.
    • Notice that you can move $|x-a|$ out of the denominator because $x\neq a$ by (2).
  • The conclusion in (6) that we much show that $f(x)\lt f(a)$ is now the statement we must prove.

Remark: In the following items, I mention the context of the proof. I am using the word informally here. It is used in some forms of formal logic with a related but more precise meaning. The context consists of the variables you must hold in your head as you read each part of the proof, along with their current constraints. “Current” means the “now” that you are in when considering the step of the proof you are reading right now. I give some references at the end of the post.

  • At the point between (6) and (7), our context consists of $a$, $R$ and $f$ all subject to some constraints. $x$ is not yet in the context of our proof because its previous occurrences in the theorems and in (1) through (6) have been bound, mostly by an unexpressed universal quantifier. Now we are to think of $x$ as a specific number bound by some constraints.
  • The statement in (7) that the case $x\gt a$ as a symmetric proof is a much higher-level claim than the other steps in this proof, even though in fact it is not very high level compared to statements such as “An application of Serre’s spectral sequence shows$\ldots$”. Most mathematicians with even a little experience will read this statement and accept it in the confidence that they will know how to swap “$\lt$” and “$\gt$” in the proof in the correct way (which is a bit picky) to provide a dual proof. Some students might write out the dual proof to make sure they understand it (more likely because writing it out was a class assignment). I await the day that an automated proof checker can handle a statement like this.
  • (8) introduces three new math objects $\epsilon$, $\delta$ and $y$ subject to several constraints. The symbols occur earlier but they are all bound. $\epsilon$ will be fixed in our context from now until (10). The others don’t appear later.
  • (9) consists of several steps of algebraic computation. A cognoscent (I am tired of writing “savvy”) reader first looks at the computation as a whole and notices that it deduces that $|f(x)-f(a)|\lt\epsilon$, which is almost what is to be proved. This helps the reader understand the reason for the calculation. No mention whatever is made in this step of all this stuff that should go through your mind (or the proof-checker’s “mind”).
  • The computations in (9) are are basic algebra not explained step by step, except that the remark that $f(x)\lt f(y)$ explains how you get $f(x)-f(y)+f(y)-f(a) \lt f(y)-f(a)$.
  • (10) banishes $\epsilon$ from the context by universally quantifying over it. That $f(x)\leq f(a)$ follows by the garbage-dump-in-Star-Wars trick that often baffles first year analysis students: Since for all positive $\epsilon$, $f(x)\lt f(a)+\epsilon$, then $f(x)\leq f(a)$. (See also Terry Tao’s article in Tricks Wiki.)
  • (11) “By the same argument as leading up to (10)” puts some demands on the reader, who has to discover that you have to go back to (7) and do the following steps with a new context using a value of $x$ that is halfway closer to $a$ than the “old” $x$ was. This means in particular that the choice of $\frac{x-2}{2}$ is unnecessarily specific. But it works.
  • (12) suppresses the reference to (11).
  • References

    I have written extensively on these topics. Here are some links.

    Rich-rigorous bifurcation in math thinking

The symbolic language

Math English and the language of proofs

Proofs and context

Send to Kindle

Extensional and Intensional

This post uses the word intensional, which is not the word "intentional" and doesn't mean the same thing.

 

The connection between rich view/rigorous view and intensional/extensional

 

In the abmath article Images and Metaphors I wrote about the rigorous view of math, in contrast to the rich view which allows metaphors, images and intuition. F. Kafi has proposed the following thesis:

The rigorous mode of thinking deals with the extensional meaning of mathematical objects while the metaphoric mode of thinking deals with the intensional meaning of mathematical objects.

This statement is certainly suggestive as an analogy. I have several confused and disjointed thoughts about it.

What does "intensional" mean?

Philosophy

Philosophers say that "the third largest planet in the solar system" has intensional meaning and "Neptune" has extensional meaning. Among other things we might discover a planet ridiculously far out that is bigger than Neptune. But the word "Neptune" denotes a specific object.

The intensional meaning of "the third largest planet in the solar system" has a hidden time dimension that, if made overt, makes the statement more nearly explicit. (Don't read this paragraph as a mathematical statement; it is merely thrashing about to inch towards understanding.)

Computing science

Computer languages are distinguishes as intensional or extensional, but their meaning there is technical, although clearly related to the philosophers' meaning.

I don't understand it very well, but in Type Theory and in Logic, an intensional language seems to make a distinction between declaring two math objects to be equal and proving that they are equal. In an extensional language there is no such distinction, with the effect that in a typed language typing would be undecidable.

Here is another point: If you define the natural numbers by the Peano axioms, you can define addition and then prove that addition is commutative. But for example a vector space is usually defined by axioms and one of the axioms is a declaration that addition of vectors is commutative. That is an imposed truth, not a deduced one. So is the difference between intensional and extensional languages really a big deal or just a minor observation?

What is "dry-bones rigor"?

Another problem is that I have never spelled out in more than a little detail what I mean by rigor, dry-bones rigor as I have called it. This is about the process mathematicians go through to prove a theorem, and I don't believe that process can be given a completely mathematical description. But I could go into much more detail than I have in the past.

Suppose you set out to prove that if $f(x)$ is a differentiable function and $f(a)=0$ and the graph going from left to right goes UP before $x$ reaches $a$ and then DOWN for $x$ to the right of $a$, then $a$ has to be a maximum of the function. That is a metaphorical description based on the solid physical experience of walking up to the top of a hill. But when you get into the proof you start using lots of epsilons and deltas. This abandons ideas of moving up and down and left to right and so on. As one of the members of Bourbaki said, rigorous math is when everything goes dead. That sounds like extensionality, but isn't their work really based on the idea that everything has to be reduced to sets and logic? (This paragraph was modified on 2013.11.07)

Many perfectly rigorous proofs are based on reasoning in category theory. You can define an Abelian group as a categorical diagram with the property that any product preserving functor to any category will result in a group. This takes you away from sets altogether, and is a good illustration of the axiomatic method. It is done by using nodes, arrows and diagrams. The group is an object and the binary operation is an arrow from the square of the object. Commutativity is required by stating that a certain diagram must commute. But when you prove that two elements in an Abelian group (an Abelian topological group, an Abelian group in the category of differentiable manifolds, or whatever) can be added in either order, then you find yourself staring at dead arrows and diagrams rather than dead collections of things and so you are still in rigor mortis mode.

I will write a separate post describing these examples in much more detail than you might want to think about.

Metaphors and intensionality

One other thing I won't go into now: How are thinking in metaphors and intensional descriptions related? It seems to me the two ideas are related somehow, but I don't know how to formulate it.

Send to Kindle

“Trivial”

This is an update of an article in the abstractmath glossary.

About theorems

A theorem is said to be trivial to prove or trivially true

Example:

Here is a scenario that exemplifies (a):

  • A textbook defines the image of a function $F:A\to B$ to be the set of all elements of $B$ of the form $F(a)$ for some $a\in A$.
  • It then goes on to say that $F$ is surjective if for every element $b$ of $B$ there is an element $a\in A$ with the property that $F(a) = b$.
  • It then states a theorem, or give an exercise, that says that a function $F:A\to B$ is surjective if and only if the image of $F$ is $B$.
  • The proof follows immediately by rewriting using definitions.
  • The instructor calls the proof trivial and goes on to the next topic.
  • Some students are totally baffled.

I have seen this happen many times with this and other theorems.  This sort of incident may be why many intelligent people feel they are "bad at math".

People are not born knowing the principle of rewriting by definitions. The principle needs to be TAUGHT.

  • When a class is first introduced to proof techniques the instructor should explicitly describe rewriting by definitions with several examples.
  • After that, the instructor can say that a proof follows by rewriting by definitions and make it clear that the students will have to do the work (then or later).
  • Such a proof is justly called "trival" but saying it is trivial is also a putdown if no one has pointed out the procedure of rewriting by definitions.

Example:

This example illustrates (b).

Theorem: Let $G$ be a finite group and $H$ a subgroup of index $2$ (meaning it has half the number of elements of the group).  Then $H$ is normal in $G$.

Basic facts about groups and subgroups learned in first semester abstract algebra:

  • A subgroup of a group determines a partition consisting of left cosets and another partition of right cosets, each (in the finite case) with the same number of elements as the subgroup.
  • A subgroup is a left coset of itself and also a right coset of itself.
  • If every left coset is also a right coset and vice versa (so the two partitions just mentioned are the same), then by definition the subgroup is normal in the group.

Now if $H$ has index $2$ that means that each partition consists of two cosets. In both cases, one of them has to be $H$, so the other one has to be $G\setminus H$, which must therefore be a left and right coset of $H$. So $H$ is normal in $G$.

So once you understand the basics about cosets and normal subgroups, the fact that $H$ has to be normal if it is of index $2$ is "obvious". I don't think you should call this "trivial". Best to say it is "obvious if you have a clear understanding of cosets of groups".

About mathematical objects

  • A function may be called trivial if it is the identity function or a constant function, and possibly in other circumstances. (If someone showed that the cosmo­logical constant is 0 that would not be called trivial.)
  • A solution to an equation may be said to be trivial if it is 0 or 1. There may be other situations in which a solution is called "trivial" as well.
  • A mathematical structure is said to be trivial if its underlying set is empty or a singleton set. In particular, a subset of a set is nontrivial if it is nonempty. I have not found an example where "nontrivial subset" means it is not a singleton. 

Note: "Trivial" and "degenerate" overlap in meaning but are not interchangeable.  What is called "degenerate" seems to depend on the mathematical specialty.

Send to Kindle

The definition of “function”

 

This is the new version of the abstractmath article on the definition of function. I had to adapt the formatting and some of it looks weird, but legible. It is prettier on abstractmath.org.

I expect to announce new revisions of other abmath articles on this blog, with links, but not to publish them here. This article brings out a new point of view about defining functions that I wanted to call attention to, so I am publishing it here, as well.

 

FUNCTIONS: SPECIFICATION AND DEFINITION

It is essential that you understand many of the images, metaphors and terminology that mathe­maticians use when they think and talk about functions. For many purposes, the precise mathematical definition of "function" does not play much of a role when you are trying to understand particular kinds of functions. But there is one point of view about functions that has resulted in fundamental progress in math:

 

 

A function is a mathematical object.

To deal with functions in that way you need a precise definition of "function". That is what this article gives you.

  • The article starts by giving a specification of "function".
  • After that, we get into the technicalities of the definitions of the general concept of function.
  • Things get complicated because there are several inequivalent definitions of "function" in common use.

Specification of "function"

A function $f$ is a mathematical object which determines and is completely determined by the following data:

(DOM) $f$ has a domain, which is a set. The domain may be denoted by $\text{dom} f$.

(COD) $f$ has a codomain, which is also a set and may be denoted by $\text{cod} f$.

(VAL) For each element $a$ of the domain of $f$, $f$ has a value at $a$, denoted by $f(a)$.

(FP) The value of $f$ at $a$ is completely determined by $a$ and $f$.

(VIC) The value of $f$ at $a$ must be an element of the codomain of $f$.

  • The operation of finding $f(a)$ given $f$ and $a$ is called evaluation.
  • "FP" means functional property.
  • "VIC" means "value in codomain".

Examples

The examples of functions chapter contains many examples. The two I give here provide immediate examples.

A finite function

Let $F$ be the function defined on the set $\left\{1,\,2,3,6 \right\}$ as follows: $F(1)=3,\,\,\,F(2)=3,\,\,\,F(3)=2,\,\,\,F(6)=1$. This is the function called "Finite'' in the chapter on examples of functions.

  • The definition of $F$ says "$F$ is defined on the set $\left\{1,\,2,\,3,\,6 \right\}$". That phrase means that the domain is that set.
  • The value of $F$ at each element of the domain is given explicitly. The value at 3, for example, is 2, because the definition says that $F(2) = 3$. No other reason needs to be given. Mathematical definitions can be arbitrary.
  • The codomain of $F$ is not specified, but must include the set $\{1,2,3\}$. The codomain of a function is often not specified when it is not important — which is most of the time in freshman calculus (for example).

A real-valued function

Let $G$ be the real-valued function defined by the formula $G(x)={{x}^{2}}+2x+5$.

  • The definition of $G$ gives the value at each element of the domain by a formula. The value at $3$, for example, is $G(3)=3^2+2\cdot3+5=20$.
  • The definition of $G$ does not specify the domain. The convention in the case of functions defined on the real numbers by a formula is to take the domain to be all real numbers at which the formula is defined. In this case, that is every real number, so the domain is $\mathbb{R}$.
  • The definition does not specify the codomain, either. However, must include all real numbers greater than or equal to 4. (Why?)

What the specification means

  • The specification guarantees that a function satisfies all five of the properties listed.
  • The specification does not define a mathematical structure in the way mathematical structures have been defined in the past: In particular, it does not require a function to be one or more sets with structure.
  • Even so, it is useful to have the specification, because:

     

     

    Many mathematical definitions
    introduce extraneous technical elements
    which clutter up your thinking
    about the object they define.

     

     

    I will say more about this when I give the various definitions that are in use.

History

Until late in the nineteenth century, functions were usually thought of as defined by formulas (including infinite series). Problems arose in the theory of harmonic analysis which made mathematicians require a more general notion of function. They came up with the concept of function as a set of ordered pairs with the functional property (discussed below), and that understanding revolutionized our understanding of math.

This discussion is an over­simpli­fication of the history of mathe­matics, which many people have written thick books about. A book relevant to these ideas is Plato's Ghost, by Jeremy Gray.

In particular, this definition, along with the use of set theory, enabled abstract math (ahem) to become a common tool for understanding math and proving theorems. It is conceivable that some of you may wish it hadn't. Well, tough.

The more modern definition of function given here (which builds on the older definition) came into use beginning in the 1950's. The strict version became necessary in algebraic topology and is widely used in many fields today.

The concept of function as a formula never disappeared entirely, but was studied mostly by logicians who generalized it to the study of function-as-algorithm. Of course, the study of algorithms is one of the central topics of modern computing science, so the notion of function-as-formula (updated to function-as-algorithm) has achieved a new importance in recent years.

To state both the old abstract definition and the modern one, we need a preliminary idea.

The functional property

A set $P$ of ordered pairs has the functional property if two pairs in $P$ with the same first coordinate have to have the same second coordinate (which means they are the same pair). In other words, if $(x,a)$ and $(x,b)$ are both in $P$, then $a=b$.

How to think about the functional property

The point of the functional property is that for any pair in the set of ordered pairs, the first coordinate determines what the second one is. That's why you can write "$G(x)$'' for any $x $ in the domain of $G$ and not be ambiguous.

Examples

  • The set $\{(1,2), (2,4), (3,2), (5,8)\}$ has the functional property, since no two different pairs have the same first coordinate. Note that there are two different pairs with the same second coordinate. This is irrelevant to the functional property.
  • The set $\{(1,2), (2,4), (3,2), (2,8)\}$ does not have the functional property. There are two different pairs with first coordinate 2.
  • The empty set $\emptyset$ has the function property vacuously.

Graph of a function.

Example: graph of a function defined by a formula

In calculus books, a picture like this one (of part of $y=x^2+2x+5$) is called a graph. Here I use the word "graph" to denote the set of ordered pairs \[\left\{ (x,{{x}^{2}}+2x+5)\,\mathsf{|}\,x\in \mathbb{R } \right\}\] which is a mathematical object rather than some ink on a page or pixels on a screen.

The graph of any function studied in beginning calculus has the functional property. For example, the set of ordered pairs above has the functional property because if $x$ is any real number, the formula ${{x}^{2}}+2x+5$ defines a specific real number.

  • if $x = 0$, then ${{x}^{2}}+2x+5=5$, so the pair $(0, 5)$ is an element of the graph of $G$. Each time you plug in $0$ in the formula you get 5.
  • if $x = 1$, then ${{x}^{2}}+2x+5=8$.
  • if $x = -2$, then ${{x}^{2}}+2x+5=5$.

You can measure where the point $\{-2,5\}$ is on the (picture of) the graph and see that it is on the blue curve as it should be. No other pair whose first coordinate is $-2$ is in the graph of $G$, only $(-2, 5)$. That is because when you plug $-2$ into the formula ${{x}^{2}}+2x+5$, you get $5$ and nothing else. Of course, $(0, 5)$ is in the graph, but that does not contradict the functional property. $(0, 5)$ and $(-2, 5)$ have the same second coordinate, but that is OK.

Modern mathematical definition of function

A function $f$ is a mathematical structure consisting of the following objects:

  • A set called the domain of $f$, denoted by $\text{dom} f$.
  • A set called the codomain of $f$, denoted by $\text{cod} f$.
  • A set of ordered pairs called the graph of $ f$, with the following properties:
  • $\text{dom} f$ is the set of all first coordinates of pairs in the graph of $f$.
  • Every second coordinate of a pair in the graph of $f$ is in $\text{cod} f$ (but $\text{cod} f$ may contain other elements).
  • The graph of $f$ has the functional property.

Using arrow notation, this implies that $f:A\to B$.

Remark

The main difference between the specification of function given previously and this definition is that the definition replaces the statement "$f$ has a value at $a$" by introducing a set of ordered pairs (the graph) with the functional property.

  • This set of ordered pairs is extra structure introduced by the definition mainly in order to make the definition a classical sets-with-structure, which makes the graph, which should be a concept derived from the concept of function, into an apparently necessary part of the function.
  • That suggests incorrectly that the graph is more of a primary intuition that other intuitions such as function as relocator, function as transformer, and other points of view discussed in the article Intuitions and metaphors for functions.

Examples

  • Let $F$ have graph $\{(1,2), (2,4), (3,2), (5,8)\}$ and define $A = \{1, 2, 3, 5\}$ and $B = \{2, 4, 8\}$. Then $F:A\to B$ is a function. In speaking, we would usually say, "$F$ is a function from $A$ to $B$."
  • Let $G$ have graph $\{(1,2), (2,4), (3,2), (5,8)\}$ (same as above), and define $A = \{1, 2, 3, 5\}$ and $C = \{2, 4, 8, 9, 11, \pi, 3/2\}$. Then $G:A\to C$ is a (admittedly ridiculous) function. Note that all the second coordinates of the graph are in $C$, along with a bunch of miscellaneous suspicious characters that are not second coordinates of pairs in the graph.
  • Let $H$ have graph $\{(1,2), (2,4), (3,2), (5,8)\}$. Then $H:A\to \mathbb{R}$ is a function, since $2$, $4$ and $8$ are all real numbers.
  • Let $D = \{1, 2, 5\}$ and $E = \{1, 2, 3, 4, 5\}$. Then there is no function $D\to A$ and no function $E\to A$ with graph $\{(1,2), (2,4), (3,2), (5,8)\}$. Neither $D$ nor $E$ has exactly the same elements as the first coordinates of the graph.

Identity and inclusion

Suppose we have two sets  A and  B with $A\subseteq B$.

  • The identity function on A is the function ${{\operatorname{id}}_{A}}:A\to A$ defined by ${{\operatorname{id}}_{A}}(x)=x$ for all $x\in A$. (Many authors call it ${{1}_{A}}$).
  • When $A\subseteq B$, the inclusion function from $A$ to $B$ is the function $i:A\to B$ defined by $i(x)=x$ for all $x\in A$. Note that there is a different function for each pair of sets $A$ and $B$ for which $A\subseteq B$. Some authors call it ${{i}_{A,\,B}}$ or $\text{in}{{\text{c}}_{A,\,B}}$.

The identity function and an inclusion function for the same set $A$ have exactly the same graph, namely $\left\{ (a,a)|a\in A \right\}$. More about this below.

Other definitions of function

Original abstract definition of function

Definition

Remarks

Possible confusion

Some confusion can result because of the presence of these two different definitions.

Multivalued function

Some older mathematical papers in com­plex func­tion theory do not tell you that their functions are multi­valued. There was a time when com­plex func­tion theory was such a Big Deal in research mathe­matics that the phrase "func­tion theory" meant complex func­tion theory and all the cogno­scenti knew that their functions were multi­valued.

The phrase multivalued function refers to an object that is like a function $f:S\to T$ except that for $s\in S$, $f(s)$ may denote more than one value.

Examples

  • Multivalued functions arose in considering complex functions. In common practice, the symbol $\sqrt{4}$ denoted $2$, although $-2$ is also a square root of $4$. But in complex function theory, the square root function takes on both the values $2$ and $-2$. This is discussed in detail in Wikipedia.
  • The antiderivative is an example of a multivalued operator. For any constant $C$, $\frac{x^3}{3}+C$ is an antiderivative of $x^2$.

A multivalued function $f:S\to T$ can be modeled as a function with domain $S$ and codomain the set of all subsets of $T$. The two meanings are equivalent in a strong sense (naturally equivalent}). Even so, it seems to me that they represent two differ­ent ways of thinking about multivalued functions. ("The value may be any of these things…" as opposed to "The value is this whole set of things.")

The phrases "multivalued function" and "partial function" upset some picky types who say things like, "But a multi­valued func­tion is not a func­tion!". A step­mother is not a mother, either. See the Hand­book article on radial category.

Partial function

A partial function $f:S\to T$ is just like a function except that its input may be defined on only a subset of $S$. For example, the function $f(x)=\frac{1}{x}$ is a partial function from the real numbers to the real numbers.

This models the behavior of computer programs (algorithms): if you consider a program with one input and one output as a function, it may not be defined on some inputs because for them it runs forever (or gives an error message).

In some texts in computing science and mathematical logic, a function is by convention a partial function, and this fact may not be mentioned explicitly, especially in research papers.

New approaches to functions

All the definitions of function given here produce mathematical structures, using the traditional way to define mathematical objects in terms of sets. Such definitions have disadvantages.

Mathematicians have many ways to think about functions. That a function is a set of ordered pairs with a certain property (functional) and possibly some ancillary ideas (domain, codomain, and others) is not the way we usually think about them$\ldots$Except when we need to reduce the thing we are studying to its absolutely most abstract form to make sure our proofs are correct. That most abstract form is what I have called the rigorous view or the dry bones and it is when that reasoning is needed that the sets-with-structure approach has succeeded.

Our practice of abstraction has led us to new approaches to talking about functions. The most important one currently is category theory. Roughly, a category is a bunch of objects together with some arrows going between them that can be composed head to tail. Functions between sets are examples of this: the sets are the objects and the functions the arrows.

This abstracts the idea of function in a way that brings out common ideas in various branches of math. Research papers in many branches of mathematics now routinely use the language of category theory. Categories now appear in some undergraduate math courses, meaning that Someone needs to write a chapter on category theory for abstractmath.org.

Besides category theory, computing scientists have come up with other abstract ways of dealing with functions, for example type theory. It has not come as far along as category theory, but has shown recent signs of major progress.

Both category theory and type theory define math objects in terms of their effect on and relationship with other math objects. This makes it possible to do abstract math entirely without using sets-with-structure as a means of defining concepts.

 

Send to Kindle

Function and codomain

I recently posted the following information in the talk page of the Wikipedia article on functions, where they were arguing about whether "function" means a set of ordered pairs with the functional property or a structure with a domain $D$, a codomain $C$, and a graph $G$ which is a subset of $D\times C$ with the functional property.

I collected data from some math books published since 2000 that contain a definition of function; they are listed below.  In this list, "typed" means  function was defined as going from a set A to a set B, A was called the domain, and B was not given a name. If "typed" is followed by a word (codomain, range or target) that was the name given the codomain. One book defined a function essentially as a partial function. Some that did not name the codomain defined "range" in the sense of image. Some of them emphasized that the range/image need not be the same as the codomain.

As far as I know, none of these books said that if two functions had the same domain and the same graph but different codomains they had to be different functions.  But I didn't read any of them extensively. 

My impression is that modern mathematical writing at least at college level does distinguish the domain, codomain, and image/range of a function, not always providing a word to refer to the codomain.

If the page number as a question mark after it that means I got the biblio data for the book from Amazon and the page number from Google books, which doesn't give the edition number, so it might be different.

I did not look for books by logicians or computing scientists.  My experience is that logicians tend to use partial functions and modern computing scientists generally require the codomain to be specified.

Opinion:  If you don't distinguish functions as different if they have different codomains, you lose some basic intuition (a function is a map) and you mess up common terminology.  For example the only function from {1} to {1} is the identity function, and is surjective.  The function from {1} to the set of real numbers (which is a point on the real line) is not the identity function and is not surjective.

THE LIST

Mathematics for Secondary School Teachers
 By Elizabeth G. Bremigan, Ralph J. Bremigan, John D. Lorch, MAA 2011
p. 6 (typed)

Oxford Concise Dictionary of Mathematics, ed. Christopher Clapham and James Nicholson,  Oxford University Press, 4th ed., 2009.
p. 184, (typed, codomain)

Math and Math-in-school: Changes in the Treatment of the Function Concept in …
 By Kyle M. Cochran, Proquest, 2011
p74  (partial function)

 Discrete Mathematics: An Introduction to Mathematical Reasoning
 By Susanna S. Epp, 4th edition, Cengage Learning, 2010 
 p. 294? (typed, co-domain)

 Teaching Mathematics in Grades 6 – 12: Developing Research-Based …
 By Randall E. Groth, SAGE, 2011
 p236 (typed, codomain)

Essentials of Mathematics, by Margie Hale, MAA, 2003.
p. 38 (typed, target).

Elements of Advanced Mathematics
 By Steven G. Krantz, 3rd ed., Chapman and Hall, 2012
p79? (typed, range)

Bridge to Abstract Mathematics
 By Ralph W. Oberste-Vorth, Aristides Mouzakitis, Bonita A. Lawrence, MAA 2012
 p76 (typed, codomain)

The Road to Reality by Roger Penrose, Knopf, 2005.
p. 104 (typed, target)

Precalculus: Mathematics for Calculus
 By James Stewart, Lothar Redlin, Saleem Watson, Cengage, 2011
p. 143.  (typed)

The Mathematics that Every Secondary School Math Teacher Needs to Know
 By Alan Sultan, Alice F. Artzt , Routledge, 2010.
 p.400 (typed)
 
 

Send to Kindle