Tag Archives: mathematical object

Abstract objects

Some thoughts toward revising my article on mathematical objects.  

Mathematical objects are a kind of abstract object.  There are lots of abstract objects that are not mathematical objects,  For example, if you keep a calendar or schedule for appointments, that calendar is an abstract object.  (This example comes from [2]). 

It may be represented as a physical object or you may keep it entirely in your head.  I am not going to talk about the latter possibility, because I don't know what to say.

  1. If it is a paper calendar, that physical object represents the information that is contained in your calendar.  
  2. Same for a calendar on a computer, but that is stored as magnetic bits on a disk or in flash memory. A computer program (part of the operating system) is required to present it on the screen in such a way that you can read it.  Each time you open it, you get a new physical representation of the calendar.

Your brain contains a module (see [5], [7]) that interprets the representation in (1) or (2) and which has connections with other modules in your brain for dates, times, locations and whether the appointment is for a committee, a medical exam, or whatever.  

The calendar-interpreter module in your brain is necessary for the physical object to be a calendar.  The physical object is not in itself your calendar.  The calendar in this sense does not exist in the physical world.  It is abstract.  Since we think of it as a thing, it is an abstract object.

The abstract object "my calendar" affects the physical world (it causes you to go to the dentist next Tuesday).  The relation of the abstract object to the physical world is mediated by whatever physical object you call your calendar along with the modules in the brain that relate to it.  The modules in the brain are actions by physical objects, so this point of view does not involve Cartesian style dualism.

Note:  A module is a meme.  Are all memes modules?  This needs to be investigated.  Whatever they are, they exist as physical objects in people's brains.

Mathematical objects

A rigorous proof of a theorem about a mathematical object tends to refer to the object as if it were absolutely static and did not affect anything in the physical world.  I talked about this in [10], where I called it the dry bones representation of a mathematical object.  Mathematical objects don't have to be thought of this way, but (I suggest) what makes them mathematical objects is that they can be thought of in dry bones mode.  

If you use calculus to figure out how much fuel to use in a rocket to make it go a mile high, then actually use that amount in the rocket and send it off, your calculations have affected your physical actions, so you were thinking of the calculations as an abstract object.  But if you sit down to check your calculations, you concentrate on the steps one by one with the rules of algebra and calculus in mind.  You are looking at them as inert objects, like you would look at a bone of a dinosaur to see what species it belongs to. From that point of view your calculations form a mathematical object, because you are using the dry-bones approach.

Caveat

All this blather is about how you should think about mathematical objects.  It can be read as philosophy, but I have no intention of defending it as philosophy.  People learning abstract math at college level have a lot of trouble thinking about mathematical objects as objects, and my intention is to start clarifying some aspects of how you think about them in different circumstances.  (The operative word is "start" — there is a lot more to be said.)

About the exposition of this post (a commercial)

You will notice that I gave examples of abstract objects but did not define the word "abstract object".  I did the same with mathematical objects.  In both cases, I put the word "abstract object" or "mathematical object" in boldface at a suitable place in the exposition.

That is not the way it is done in math, where you usually make the definition of a word in a formal way, marking it as Definition, putting the word in bold or italics, and listing the attributes it must have.  I want to point out two things:

  • For the most part, that behavior is peculiar to mathematics.
  • This post is not a presentation of mathematical ideas.  

This gives me an opportunity for a commercial:  Read what we have written about definitions in References [1], [3] and [4].

References

  1. Atish Bagchi and Charles Wells, Varieties of Mathematical Prose, 1998.
  2. Reuben Hersh, What is mathematics, really? Oxford University Press, 1997
  3. Charles Wells, Handbook of Mathematical Discourse.
  4. Charles Wells, Mathematical objects in abstractmath.org
  5. Math and modules of the mind (previous post)
  6. Mathematical Concepts (previous post)
  7. Thinking about abstract math (previous post)
  8. Terrence W. Deacon, Incomplete Nature.  W. W. Norton, 2012. [I have read only a little of this book so far, but I think he is talking about abstract objects in the sense I have described above.]
  9. Gideon Rosen, Abstract Objects.  Stanford Encyclopedia of Philosophy.
  10. Representations II: Dry Bones (previous post)

 

http://plato.stanford.edu/entries/abstract-objects/

Send to Kindle

Freezing a family of functions

The interactive examples in this post require installing Wolfram CDF player, which is free and works on most desktop computers using Firefox, Safari and Internet Explorer, but not Chrome. The source code is the Mathematica Notebook algebra1.nb, which is available for free use under a Creative Commons Attribution-ShareAlike 2.5 License. The notebook can be read by CDF Player if you cannot make the embedded versions in this post work.

Some background

  • Generally, I have advocated using all sorts of images and metaphors to enable people to think about particular mathematical objects more easily.
  • In previous posts I have illustrated many ways (some old, some new, many recently using Mathematica CDF files) that you can provide such images and metaphors, to help university math majors get over the abstraction cliff.
  • When you have to prove something you find yourself throwing out the images and metaphors (usually a bit at a time rather than all at once) to get down to the rigorous view of math [1], [2], [3], to the point where you think of all the mathematical objects you are dealing with as unchanging and inert (not reacting to anything else).  In other words, dead.
  • The simple example of a family of functions in this post is intended to give people a way of thinking about getting into the rigorous view of the family.  So this post uses image-and-metaphor technology to illustrate a way of thinking about one of the basic proof techniques in math (representing the object in rigor mortis so you can dissect it).  I suppose this is meta-math-ed.  But I don’t want to think about that too much…
  • This example also illustrates the difference between parameters and variables. The bottom line is that the difference is entirely in how we think about them. I will write more about that later.

 A family of functions

This graph shows individual members of the family of functions \( y=a\sin\,x\) for various values of a. Let’s look at some of the ways you can think about this.

  • Each choice of  “shows the function for that value of the parameter a“.  But really, it shows the graph of the function, in fact only the part between x=-4 and x= 4.
  • You can also think of it as showing the function changing shape as a changes over time (as you slide the controller back and forth).

Well, you can graph something changing over time by introducing another axis for time.  When you graph vertical motion of a particle over time you use a two-dimensional picture, one axis representing time and the other the height of the particle. Our representation of the function y=a\sin\,x is a two-dimensional object (using its graph) so we represent the function in 3-space, as in this picture, where the slider not only shows the current (graph of the) function for parameter value a but also locates it over a on the z axis.

The picture below shows the surface given by y=a\sin\,x as a function of both variables a and x. Note that this graph is static: it does not change over time (no slide bar!). This is the family of functions represented as a rigorous (dead!) mathematical object.

If you click the “Show Curves” button, you will see a selection of the curves in middle diagram above drawn as functions of x for certain values of a. Each blue curve is thus a sine wave of amplitude a. Pushing that button illustrates the process going on in your mind when you concentrate on one aspect of the surface, namely its cross-sections in the x direction.

Reference [4] gives the code for the diagrams in this post, as well as a couple of others that may add more insight to the idea. Reference [5] gives similar constructions for a different family of functions.

References

  1. Rigorous view in abstractmath.org 
  2. Representations II: Dry Bones (post)
  3. Representations III: Rigor and Rigor Mortis (post)
  4. FamiliesFrozen.nb.
  5. AnotherFamiliesFrozen.nb (Mathematica file showing another family of functions)
Send to Kindle

Thinking about abstract math

 

The abstraction cliff

In universities in the USA, a math major typically starts with calculus, followed by courses such as linear algebra, discrete math, or a special intro course for math majors (which may be taken simultaneously with calculus), then go on to abstract algebra, analysis, and other courses involving abstraction and proofs.

At this point, too many of them hit a wall; their grades drop and they change majors.  They had been getting good grades in high school and in calculus because they were strong in algebra and geometry, but the sudden increase in abstraction in the newer courses completely baffles them. I believe that one big difficulty is that they can't grasp how to think about abstract mathematical objects.  (See Reference [9] and note [a].)   They have fallen off the abstraction cliff.  We lose too many math majors this way. (Abstractmath.org is my major effort to address the problems math majors have during or after calculus.)

This post is a summary of the way I see how mathematicians and students think about math.  I will use it as a reference in later posts where I will write about how we can communicate these ways of thinking.

Concept Image

In 1981, Tall and Vinner  [5] introduced the notion of the concept image that a person has about a mathematical concept or object.   Their paper's abstract says

The concept image consists of all the cognitive structure in the individual's mind that is associated with a given concept. This may not be globally coherent and may have aspects which are quite different from the formal concept definition.

The concept image you may have of an abstract object generally contains many kinds of constituents:

  • visual images of the object
  • metaphors connecting the object to other concepts
  • descriptions of the object in mathematical English
  • descriptions and symbols of the object in the symbolic language of math
  • kinetic feelings concerning certain aspects of the object
  • how you calculate parameters of the object
  • how you prove particular statements about the object

This list is incomplete and the items overlap.  I will write in detail about these ideas later.

The name "concept image" is misleading [b]), so when I have written about them, I have called them metaphors or mental representations as well as concept images, for example in [3] and [4].

Abstract mathematical concepts

This is my take on the notion of concept image, which may be different from that of most researchers in math ed. It owes a lot to the ideas of Reuben Hersh [7], [8].

  • An abstract mathematical concept is represented physically in your brain by what I have called "modules" [1] (physical constituents or activities of the brain [c]).
  • The representation generally consists of many modules.  They correspond to the list of constituents of a concept image given above.  There is no assumption that all the modules are "correct".
  • This representation exists in a semi-public network of mathematicians' and students' brains. This network exercises (incomplete) control over your personal representation of the abstract structure by means of conversation with other mathematicians and reading books and papers.  In this sense, an abstract concept is a social object.  (This is the only point of view in the philosophy of math that I know of that contains any scientific content.)

Notes

[a]  Before you object that abstraction isn't the only thing they have trouble with, note that a proof is an abstract mathematical object. The written proof is a representation of the abstract structure of the proof.  Of course, proofs are a special kind of abstract structure that causes special problems for students.

[b] Cognitive science people use "image" to include nonvisual representations, but not everyone does.  Indeed, cognitive scientists use "metaphor" as well with a broader meaning than your high school English teacher.  A metaphor involves the cognitive merging of parts of two concepts (specifically with other parts not merged). See [6].

[c] Note that I am carefully not saying what the modules actually are — neurons, networks of neurons, events in the brain, etc.   From the point of view of teaching and understanding math, it doesn't matter what they are, only that they exist and live in a society where they get modified by memes  (ideas, attitudes, styles physically transmitted from brain to brain by speech, writing, nonverbal communication, appearance, and in other ways).

References

  1. Math and modules of the mind (previous post)
  2. Mathematical Concepts (previous post)
  3. Mental, physical and mathematical representations (previous post)
  4. Images and Metaphors (abstractmath.org)
  5. David Tall and Schlomo Vinner, Concept Image and Concept Definition in Mathematics with particular reference to limits and continuity, Journal Educational Studies in Mathematics, 12 (May, 1981), no. 2, 151–169.
  6. Conceptual metaphor (Wikipedia article).
  7. What is mathematics, really? by Reuben Hersh, Oxford University Press, 1999.  Read online at Questia.
  8. 18 Unconventional Essays on the Nature of Mathematics, by Reuben Hersh. Springer, 2005.
  9. Mathematical objects (abstractmath.org).

 

 

Send to Kindle

Representations 2

Introduction

In a recent post I began a discussion of the mental, physical and mathematical representations of a mathematical object. The discussion continues here. Mathematicians, linguists, cognitive scientists and math educators have investigate some aspects of this topic, but there are many subtle connections between the different ideas which need to be studied.

I don’t have any overall theoretical grasp of these relationships. What I will do here is grope for an overall theory by mentioning a whole bunch of fine points. Some of these have been discussed in the literature and some (as far as I know) have not been discussed.  Many of them (I hope)  can be described as “an obvious fact about representations but no one has pointed it out before”.  Such fine points could be valuable; I think some scholars who have written about mathematical discourse and math in the classroom are not aware of many of these facts.

I am hoping that by thrashing around like this here (for graphs of functions) and for other concepts (set, function, triangle, number …) some theoretical understanding may emerge of what it means to understand math, do math, and talk about math.

The graph of a function

Let’s look at the graph of the function {y=x^3-x}.

What you are looking at is a physical representation of the graph of the function. The graph creates in your brain a mental representation of the graph of the function. These are subtly related to each other and to the mathematical definition of the graph.

Fine points

  1. The mathematical definition [2] of the graph of this function is: The set of ordered pairs of numbers {(x,x^3-x)} for all real numbers {x}.
  2. In the physical representation, each point {(x,x^3-x)} is shown in a location determined by the conventional {x-y} coordinate system, which uses a straight-line representation of the real numbers with labels and ticks.
    • The physical representation makes use of the fact that the function is continuous. It shows the graph as a curving line rather than a bunch of points.
    • The physical representation you are looking at is not the physical representation I am looking at. They are on different computer screens or pieces of paper. We both expect that the representations are very similar, in some sense physically isomorphic.
    • “Location” on the physical representation is a physical idea. The mathematical location on the mathematical graph is essentially the concept of the physical location refined as the accuracy goes to infinity. (This last statement is a metaphor attached to a genuine mathematical construction, for example Cauchy sequences.)
  3. The mathematical definition of “graph” and the physical representation are related by a metaphor. (See Note 1.)
    • The physical curve in blue in the picture corresponds via the metaphor to the graph in the mathematical sense: in this way, each location on the physical curve corresponds to an ordered pair of the form {(x,x^3-x)}.
    • The correspondence between the locations and the pairs is imperfect. You can’t measure with infinite accuracy.
    • The set of ordered pairs {(x,x^3-x)} form a parametrized curve in the mathematical sense. This curve has zero thickness. The curve in the physical representation has positive thickness.
    • Not all the points in the mathematical graph actually occur on the physical curve: The physical curve doesn’t show the left and right infinite tails.
    • The physical curve is drawn to show some salient characteristics of the curve, such as its extrema and inflection points. This is expected by convention in mathematical writing. If the graph had left out a maximum, for example, the author would be constrained (by convention!) to say so.
    • An experienced mathematician or advanced student understands the fine points just listed. A newbie may not, and may draw false conclusions about the function from the graph. (Note 2.)
  4. If you are a mathematician or at least a math student, seeing the physical graph shown above produces a mental image(see Note 3.) of the graph in your mind.
  5. The mathematical definition and the mental image are connected by a metaphor. This is not the same metaphor as the one that connects the physical representation and the mathematical definition.
    • The curve I visualize in my mental representation has an S shape and so does the physical representation. Or does it? Isn’t the S-ness of the shape a fact I construct mentally (without consciously intending to do so!)?
    • Does the curve in the mental rep have thickness? I am not sure this is a meaningful question. However, if you are a sufficiently sophisticated mathematician, your mental image is annotated with the fact that the curve has zero thickness. (See Note 4.)
    • The curve in your mental image of the curve may very well be blue (just because you just looked at my picture) but you must have an annotation to the effect that that is irrelevant! That is the essence of metaphor: Some things are identified with each other and others are emphatically not identified.
    • The coordinate axes do exist in the physical representation and they don’t exist in the mathematical definition of the graph. Of course they are implied by the definition by the properties of the projection functions from a product. But what about your mental image of the graph? My own image does not show the axes, but I do “know” what the coordinates of some of the points are (for example, {(-1,0)}) and I “see” some points (the local maximum and the local minimum) whose coordinates I can figure out.

Notes

1. This is metaphor in the sense lately used by cognitive scientists, for example in [6]. A metaphor can be described roughly as two mental images in which certain parts of one are identified with certain parts of another, in other words a pushout. The rhetorical use of the word “metaphor” requires it to be a figure of speech expressed in a certain way (the identification is direct rather than expressed by “is like” or some such thing.)  In my use in this article a metaphor is something that occurs in your brain.  The form it takes in speech or writing is not relevant.

2. I have noticed, for example, that some students don’t really understand that the left and right tails go off to infinity horizontally as well as vertically.   In fact, the picture above could mislead someone into thinking the curve has vertical asymptotes: The right tail looks like it goes straight up.  How could it get to x equals a billion if it goes straight up?

3. The “mental image” is of course a physical structure in your brain.  So mental representations are physical representations.

4. I presume this “annotation” is some kind of physical connection between neurons or something.  It is clear that a “mental image” is some sort of physical construction or event in the brain, but from what little I know about cognitive science, the scientists themselves are still arguing about the form of the construction.  I would appreciate more information on this. (If the physical representation of mental images is indeed still controversial, this says nothing bad about cognitive science, which is very new.)

References

[1] Mental Representations in Math (previous post).

[2] Definitions (in abstractmath).

[3] Lakoff, G. and R. E. Núñez (2000), Where Mathematics Comes From. Basic Books.

Send to Kindle

Mental, Physical and Mathematical Representations

For a given mathematical object, a mathematician may have:

  • A mental representation of the object. This can be a metaphor, a mental image, or a kinesthetic understanding of the object.
  • A physical representation of the object. This may be a (physical) picture or drawing or three-dimensional model of the object.
  • A mathematical definition and one or more mathematical representations for the object. Such a representation is itself a mathematical object.

The boldface things in this list are related to each other in lots of ways, and they are fuzzy and overlap and don’t include every phenomenon connected with a math object.

I have written about these things ([1], [2], [3], [4]). So have lots of other people. In this post I summarize these ideas. I expect to write about particular examples later on and will use this as a reference.

Two Examples

The following examples point out a few of the relationships between the ideas in boldface above. There is much more to understand.

Function as black box

The idea that a function is a black box or machine with input and output is a metaphor for a function.

A is a metaphor for B means that A and B are cognitively pasted together in such a way that the behavior of A is in many ways like the behavior of B. Such a thing is both useful and dangerous, dangerous because there will be ways in which A behaves that suggest inappropriate ideas about B.

The function as machine is a good metaphor: for example functional composition involves connecting the output of one machine to the input of another, and the inverse function is like running the machine backward.

The function as machine is a bad metaphor: For example, it is wrong to think you could build a machine to calculate any given function exactly. But you can still imagine such a machine, given by a specification (it outputs the value of the function at a given input) and then, in your imagination, connecting the input of one to the output of another must perforce calculate the composite of the corresponding functions.

Like any metaphor, this is a mental representation. That means the metaphor has a physical instantiation in your brain. So a metaphor has a physical representation.

Different people won’t have quite the same concept of a particular metaphor. So a metaphor will have lots of slightly different physical representations, but mathematicians form a community, and communication between mathematicians fine-tunes the different physical instantiations so that they correspond more closely to each other. This is the sense in which mathematical objects have a shared existence in a community as Reuben Hersh has suggested.

A function is a mathematical object, which can be rigorously specified as a set of ordered pairs together with a domain and a codomain. There is a cognitive relationship between the concepts of function as math object and function as black box with input and output.

Triangle

A triangle can be drawn, or created on a computer and a physical image printed out. You may also have a mental image of the triangle.

The physical and the mental images are not the same thing, but they are definitely related. The relationship is mediated by the neuronal circuitry behind your retinas, which performs a highly sophisticated transformation of the pixels on your retina into an organized physical structure in your brain, connected to various other neurons.

This circuitry exists because it helps us get a useful understanding of the world through our eyes. So a picture of a triangle takes advantage of pre-existing neuron structure to generate a useful mental representation that helps us understand and prove things about triangles.

This mental representation also lives in a community of mathematician. Like any community, it has subgroups with “dialects” — varying understanding of representation.

For example, a mathematician who looks at the triangle below sees a triangle that looks like a right triangle. A student sees a triangle that is a right triangle.

This is “sees” in the sense of what their brain reports after all that processing. The mathematician’s brain connects the “triangle I am seeing” module (in their brain) to the “looks like a right triangle” module, but does not connect it to the “is a right triangle” module because they don’t see any statement in the surrounding text that it is a right triangle. The student, on the other hand, fallaciously makes the connection to “is a right triangle” directly.

In some sense, a student who does not make that connection directly is already a mathematician.

A triangle also exists as a mathematical object in your and my brain. It is described by a formal mathematical definition. The pictures of triangles you see above do not fit this definition. For one thing, the line segments in the pictures have thickness. But the pictures trigger a reaction in your neurons that causes your brain to cognitively paste together the line segments in the drawing to the segments required by the formal definition. This is a kind of metaphor of concrete-to-abstract that connects drawings to math objects that mathematicians use all the time.

Note that this “concrete-to-abstract metaphor” itself has a physical existence in your brain.  It drops, for example, the property of thickness that the line segments in the drawing have when matching them (in the metaphor) with the line segments in the corresponding abstract triangle.  On the other hand, it preserves the sense the all three angles in the triangle are acute.  The abstract mathematical concept of triangle (the generic triangle) has no requirement on the angles except that they add up to pi.

Summary

The discussions above describe a few of the complex and subtle relationships that exist between

  • Mental representations of math objects
  • Physical representations of math objects
  • Formally defined math objects and their formally defined representations.

I have purported to discuss how mathematics is understood (especially in connection with language) in several articles and a book but only a few of the relationships I just described are mentioned in any of those articles. Perhaps one or two things I said caused you to react: “Actually, that’s obviously true but I never thought of it before”. (Much the way I had mathematicians in the ’60’s tell me, “I see what you mean that addition is a function of two variables, but I never thought of it that way before”.) (I was a brash category theorist wannabe then.)

A lot of research has been done on understanding math, and some research has been done on mathematical discourse. But what has been done has merely exposed the fin of the shark.

References

[1] Images and metaphors (in abstractmath).

[2] Representations and Models (in abstractmath).

[3] Mathematical Concepts (previous blog).

[4] Mental Representations in Math (previous blog).

Send to Kindle

Thinking about mathematical objects revisited

How we think about X

It is notable that many questions posted at MathOverflow are like, “How should I think about X?”, where X can be any type of mathematical object (quotient group, scheme, fibration, cohomology and so on).  Some crotchety contributors to that group want the questions to be specific and well-defined, but “how do I think about…” questions  are in my opinion among the most interesting questions on the website.  (See note [a]).

Don’t confuse “How do I think about X” with “What is X really?” (pace Reuben Hersh).  The latter is a philosophical question.  As far as I am concerned, thinking about how to think about X is very important and needs lots of research by mathematicians, educators, and philosophers — for practical reasons: how you think about it helps you do it.   What it really is is no help and anyway no answer may exist.

Inert and eternal

The idea that mathematical objects should be thought of as  “inert” and “eternal”  has been around for awhile.  (Never mind whether they really are inert and eternal.)  I believe, and have said in the past [1], that thinking about them that way clears up a lot of confusion in newbies concerning logical inference.

  • That mathematical objects are “inert” means that the do not cause anything. They have no effect on the real world or on each other.
  • That they are “eternal” means they don’t change over time.

Naturally, a function (a mathematical object) can model change over time, and it can model causation, too, in that it can describe a process that starts in one state and achieves stasis in another state (that is just one way of relation functions to causation).  But when we want to prove something about a type of math object, our metaphorical understanding of them has to lose all its life and color and go dead, like the dry bones before Ezekiel started nagging them.

It’s only mathematical reasoning if it is about dead things

The effect on logical inference can be seen in the fact that “and” is a commutative logical operator. 

  • “x > 1 and x < 3″ means exactly the same thing as “x < 3 and x > 1″
  • “He picked up his umbrella and went outside” does not mean the same thing as “He went outside and picked up his umbrella”.

The most profound effect concerns logical implication.  “If  x > 1 then x > 0″ says nothing to suggest that x > 1 causes it to be the case that x > 0.  It is purely a statement about the inert truth sets of two predicates lying around the mathematical boneyard of objects:  The second set includes the first one.  This makes vacuous implication perfectly obvious.  (The number -1 lies in neither truth set and is irrelevant to the fact of inclusion).

Inert and eternal rethought

There are better metaphors than these.  The point about the number 3 is that you think about it as outside time. In the world where you think about 3 or any other mathematical object, all questions about time are meaningless.

  • In the sentence “3 is a prime”, we need a new tense in English like the tenses ancient (very ancient) Greek and Hebrew were supposed to have (perfect with gnomic meaning), where a fact is asserted without reference to time.
  • Since causation involves this happens, then this happens, all questions about causation are meaningless, too.  It is not true that 3 causes 6 to be composite, while being irrelevant to the fact that 35 is composite.

This single metaphor “outside time” thus can replace the two metaphors “inert” and “eternal” and (I think) shows that the latter two are really two aspects of the same thing.

Caveat

Thinking of math objects as outside time is a Good Thing when you are being rigorous, for example doing a proof.  The colorful, changing, full-of-life way of thinking of math that occurs when you say things like the statements below is vitally necessary for inspiring proofs and for understanding how to apply the mathematics.

  • The harmonic series goes to infinity in a very leisurely fashion.
  • A function is a machine — when you dump in a number it grinds away and spits out another number.
  • At zero, this function vanishes.

Acknowledgment

Thanks to Jody Azzouni for the italics (see [3]).

Notes

a.  Another interesting type of question  “in what setting does such and such a question (or proof) make sense?” .  An example is my question in [2].

References

1.  Proofs without dry bones

2. Where does the generic triangle live?

3. The revolution in technical exposition II.

Send to Kindle

Sets don't have to be homogeneous?

Colm Bhandal commented on my article on sets in abstractmath.org.

Let me first of all say that I am impressed with your website. It gave
me a few very good insights into set notation. Now, I’ll get straight
to the point. While reading your page, I came across a section
claiming that:

“Sets do not have to be homogeneous in any sense”

This confused me for a while, as I was of the opinion that all objects in a set were of the same type. After thinking about it for a while, I came to a conclusion:

A set defines a level of abstraction at which all objects are homogeneous, though they may not be so at other levels of abstraction.

Taking the example on your page, the set {PI^2, M, f, 42, -1/e^2} contains two irrational numbers, a matrix, a function, and a whole number. Thus, the elements are not homogeneous from one perspective (level of abstraction as I call it) in that they are spread across four known sets. However, in another sense they are homogeneous, in that they are all mathematical objects. Sure, this is a very high level of abstraction: A mathematical object could be a lot of things,
but it still allows every object in the set to be treated homogeneously i.e. as mathematical objects.

You are right.  I think I had better say “The elements of a set do not have to be ‘all of the same kind’ in the sense of that phrase in everyday speech.”  Of course, a mathematician would say the elements of a set S are “all of the same kind”, the “kind” being elements of S.
 
Apparently, according to the way our brains work, there are natural kinds and artificial kinds.  There is something going on in my students’ minds that cause them to be bothered by sets like that given about or even sets such as {1,3,5,6,7,9,11} (see the Handbook, page 279).   Philosophers talk about “natural kinds” but they seem to be referring to whether they exist in the world.  What I am talking about is a construct in our brain that makes “cat” a natural kind and “blue-eyed OR calico cat” an artificial kind.  Any teacher of abstract math knows that this construct exists and has to be overcome by talking about how sets can be arbitrary, functions can be arbitrary, and so on, and that’s OK.

 This distinction seems to be built into our brains.  A large part of abstractmath.org is devoted to pointing out the clashes between mathematical thinking and everyday thinking. 

Disclaimer:  When I say the distinction is “built into our brains” I am not claiming that it is or is not inborn; it may be a result of cultural conditioning. What seems most likely to me is that our brains are wired to think in terms of natural kinds, but culture may affect which kinds they learn.  Congnitive theorists have studied this; they call them “natural categories” and the study is part of prototype theory.  I seem to remember reading that they have some evidence that babies are born with the tendency to learn natural categories, but I don’t have a reference.

Send to Kindle