Tag Archives: graph

More about defining “category”


In a recent post, I wrote about defining “category” in a way that (I hope) makes it accessible to undergraduate math majors at an early stage.  I have several more things to say about this.

Early intro to categories

The idea is to define a category as a directed graph equipped with an additional structure of composition of paths subject to some axioms.  By giving several small finite examples of categories drawn in that way that gives you an understanding of “category” that has several desirable properties:

  • You get the idea of what a category is in one lecture.
  • With the right choice of examples you get several fine points cleared up:
    • The composition is added structure.
    • A loop doesn’t have to be an identity.
    • Associativity is a genuine requirement —  it is not automatic.
  • You get immediate access to what is by far the most common notation used to work with a category — objects (nodes) and arrows.
  • You don’t have to cope with the difficult chunking required when the first examples given are sets-with-structure and structure-preserving functions.  It’s quite hard to focus on a couple of dots on the paper each representing a group or a topological space and arrows each representing a whole function (not the value of the function!).

Introduce more examples

Then the teacher can go on with the examples that motivated categories in the first place: the big deal categories such as sets, groups and topological spaces.   But they can be introduced using special cases so they don’t require much background.

  • Draw some finite sets and functions between them.  (As an exercise, get the students to find some finite sets and functions that make the picture a category with $f=kh$ as the composite and $f\neq g$.)
  • If the students have had calculus,  introduce them to the category whose objects are real finite nonempty intervals with continuous or differentiable mappings between them.  (Later you can prove that this category is a groupoid!)
  • Find all the groups on a two element set and figure out which maps preserve group multiplication.  (You don’t have to use the word “group” — you can simply show both of them and work out which maps preserve multiplication — and discover isomorphism!.)  This introduces the idea of the arrows being structure-preserving mape. You can get more complicated and use semigroups as well.  If the students know Mathematica you could even do magmas.  Well, maybe not.

All this sounds like a project you could do with high school students.

Large and small

If all this were just a high school (or intro-to-math-for-math-majors) project you wouldn’t have to talk about large vs. small.  However, I have some ideas about approaching this topic.

In the first place, you can define category, or any other mathematical object that might involve a proper class, using the syntactic approach I described in Just-in-time foundations.  You don’t say “A category consists of a set of objects and a set of arrows such that …”.  Instead you say something like “A category $\mathcal{C}$ has objects $A,\,B,\,C\ldots$ such that…”.

This can be understood as meaning “For any $A$, the statement $A$ is an object of  $\mathcal{C}$ is either true or false”, and so on.

This approach is used in the Wikibook on category theory.  (Note: this is a permanent link to the November 28 version of the section defining categories, which is mostly my work.  As always with Wikimedia things it may be entirely different when you read this.)

If I were dictator of the math world (not the same thing as dictator of MathWorld) I would want definitions written in this syntactic style.  The trouble is that mathematicians are now so used to mathematical objects having to be sets-with-structure that wording the definition as I did above may leave them feeling unmoored.  Yet the technique avoids having to mention large vs. small until a problem comes up. (In category theory it sometimes comes up when you want to quantify over all objects.)

The ideas outlined in this subsection could be a project for math majors.  You would have to introduce Russell’s Paradox.  But for an early-on intro to categories you could just use the syntactic wording and avoid large vs. small altogether.

 

http://en.wikibooks.org/w/index.php?title=Category_Theory/Categories&stableid=2221684

Send to Kindle

Defining “category”

The concept of category is typically taught later in undergrad math than the concept of group is.  It is supposedly a more advanced concept.  Indeed, the typical examples of categories used in applications are more advanced than some of those in group theory (for example, symmetries of geometric shapes and operations on numbers).

Here are some thoughts on how categories could be taught as early as groups, if not earlier.

Nodes and arrows

Small finite categories can be pictured as a graph using nodes and arrows, together with a specification of the identity arrows and a definition of the composition.  (I am using the word “graph” the way category people use it:  a directed graph with possible multiple edges and loops.)

An example is the category pictured below with three objects and seven arrows. The composition is forced except for $kh$, which I hereby define to be $f$.

This way of picturing a category is  easy to grasp. The composite $kh$ visibly has to be either $f$ or $g$.  There is only one choice for the composite of any other composable pair.  Still, the choice of composite is not deducible directly by looking at the graph.

A first class in category theory using graphs as examples could start with this example, or the example in Note 1 below.  This example is nontrivial (never start any subject with trivial examples!) and easy to grasp, in this case using the extraordinary preprocessing your brain does with the input from your eyes.  The definition of category is complicated enough that you should probably present the graph and then give the definition while pointing to what each clause says about the graph.

Most abstract structures have several different ways of representing them. In contrast, when you discuss categorial concepts the standard object-and-arrow notation is the overwhelming favorite.  It reveals domains and codomains and composable pairs, in fact almost everything except which of several possible arrows the composite actually is.  If for example you try to define category using sets and functions as your running example, the student has to do a lot of on-the-go chunking — thinking of a set as a single object, of a set function (which may involve lots of complicated data) as a single chunk with a domain and a codomain, and so on.  But an example shown as a graph comes already chunked and in a picture that is guaranteed to be the most common kind of display they will see in discussions of categories.

After you do these examples, you can introduce trivial and simple graph examples in which the composition is entirely induced; for example these three:

(In case you are wondering, one of them is the empty category.)  I expect that you should also introduce another graph non-example in which associativity fails.

Multiplication tables

The multiplication table for a group is easy to understand, too, in the sense that it gives you a simple method of calculating the product of any two elements.  But it doesn’t provide a visual way to see the product as a category-as-graph does.  Of course, the graph representation works only for finite categories, just as the multiplication table works only for finite groups.

You can give a multiplication table for a small finite category, too, like the one below for the category above.  (“iA” means the identity arrow on A and composition, as usual in category theory, is right to left.) This is certainly more abstract than the graph picture, but it does hit you in the face with the fact that the multiplication is partial.

Notes

1. My suggested example of a category given as a graph shows clearly that you can define two different categorial structures on the graph.  One problem is that the two different structures are isomorphic categories.  In fact, if you engage the students in a discussion about these examples someone may notice that!  So you should probably also use the graph below,where you can define several different category structures that are not all isomorphic. 

2. Multiplication tables and categories-as-graphs-with-composition are extensional presentations.  This means they are presented with all their parts laid out in front of you.  Most groups and categories are given by definitions as accumulations of properties (see concept in the Handbook of Mathematical Discourse).  These definitions tend to make some requirements such as associativity obvious.

Students are sometimes bothered by extensional definitions.  “What are h and k (in the category above)?  What are a, b and c?” (in a group given as a set of letters and a multiplication table).

Send to Kindle

Case Study in Exposition: Secant

The interactive examples in this post require installing Wolfram CDF player, which is free and works on most desktop computers using Firefox, Safari and Internet Explorer, but not Chrome. The source code comes from several Mathematica notebooks lists in the References. The notebooks are available for free use under a Creative Commons Attribution-ShareAlike 2.5 License. The notebook can be read by CDF Player if you cannot make the embedded versions in this post work.

Pictures, metaphors and etymology

Math texts and too many math teachers do not provide enough pictures and metaphors to help students understand a concept.  I suspect that the etymology of the technical terms might also be useful. This post is an experimental exposition of the math concept of “secant” that use pictures, metaphors and etymology to describe the concept.

The exposition is interlarded with comments about what I am doing and why.  An exposition directly aimed at students would be slimmer — but some explanations of why you are doing such and such in an exposition are not necessarily out of place every time!

Secant Line

The word “secant” is used in various related ways in math.  To start with, a secant line on a curve is the unique line determined by two distinct points on the curve, like this:


The word “secant” comes from the Latin word for “cut”, which came from the Indo-European root “sek”, meaning “cut”.  The IE root also came directly into English via various Germanic sound changes to give us “saw” and “sedge”.

The picture

Showing pictures of mathematical objects that the reader can fiddle with may make it much easier to understand a new concept.  The static picture you get above by keeping your mitts off the sliders requires imagining similar lines going through other pairs of points. When you wiggle the picture you see similar lines going through other pairs of points.  You also get a very strong understanding of how the secant line is a function of the two given points.  I don’t think that is obvious to someone without some experience with such things.

This belief contains the hidden claim that individuals vary a lot on how they can see the possibilities in a still picture that stands as an example of a lot of similar mathematical objects.  (Math books are full of such pictures.)  So people who have not had much practice learning about possible variation in abstract structures by looking at one motionless one will benefit from using movable parametrized pictures of various kinds.  This is the sort of claim that is amenable to field testing.

The metaphor

Most metaphors are based on a physical phenomenon.  The mathematical meanings of “secant” use the metaphor of cutting.  When the word “secant” was first introduced by a European writer (see its etymology) in the 16th century, the word really was a metaphor.   In those days essentially every European scholar read Latin. To them “secant” would transparently mean “cutting”.  This is not transparent to many of us these days, so the metaphor may be hidden.

If you examine the metaphor you realize that (like all metaphors) it involves making some remarkably subtle connections in your brain.

  • The straight line does not really cut the curve.  Indeed, the curve itself is both an abstract object that is not physical, so can’t be cut, and also the picture you see on the screen, which is physical, but what would it mean to cut it?  Cut the screen?  The line can’t do that.
  • You can make up a story that (for example) the use was suggested by the mental image of a mark made by a knife edge crossing the plane at points a and b that looks like it is severing the curve.
  • The metaphor is restricted further by saying that it is determined by two points on the curve.   This restriction turns the general idea of secant line into a (not necessarily faithful!) two-parameter family of straight lines.  You could define such a family by using one point on the curve and a slope, for example.  This particular way of doing it with two points on the curve leads directly to the concept of tangent line as limit.

Secant on circle

Another use of the word “secant” is the red line in this picture:


This is the secant line on the unit circle determined by the origin and one point on the circle, with one difference: The secant of the angle is the line segment between the origin and the point on the curve.  This means it corresponds to a number, and that number is what we mean by “secant” in trigonometry.

To the ancient Greeks, a (positive) number was the length of a line segment.

The Definition

The secant of an angle $\theta$ is usually defined as $\frac{1}{\cos\theta}$, which you can see by similar triangles is the length of the red line in the picture above.

In many parts of the world, trig students don’t learn the word “secant”. They simply use $\frac{1}{\cos\theta}$.

This illustrates important facts about definitions:

  • Different equivalent definitions all make the same theorems true.
  • Different equivalent definitions can give you a very different understanding of the concept.

The red-line-segment-in-picture definition gives you a majorly important visual understanding of the concept of “secant”.  You can tell a lot from its behavior right off (it goes to infinity near $\pi/2$, for example).

The definition $\sec\theta=\frac{1}{\cos\theta}$ gives you a way of computing $\sec\theta$.  It also reduces the definition of $ \sec\theta$ to a previously known concept.

It used to be common to give only the $ \frac{1}{\cos\theta}$ definition of secant, with no mention of the geometric idea behind it.  That is a crime.  Yes, I know many students don’t want to “understand” stuff, they only want to know how to do the problems.  Teachers need to talk them out of that attitude.  One way to do that in this case is to test them on the geometric definition.

Etymology

This idea was known to the Arabs, and brought into European view in the 16th century by Danish mathematician Thomas Fincke in “Geometria Rotundi” (1583), where the first known use of the word “secant” occurs.  I have not checked, but I suspect from the title of the book that the geometric definition was the one he used in the book.

It wold be interesting to know the original Arabic name for secant, and what physical metaphor it is based on.  A cursory search of the internet gave me the current name in Arabic for secant but nothing else.

Graph of the secant function

The familiar graph of the secant function can be seen as generated by the angle sweeping around the curve, as in the picture below. The two red line segments always have the same length.


References

Mathematica notebooks used in this post:

 

Send to Kindle

Picturing derivatives

The CDF files in G&G posts no longer work. I have been unable to find out why.I expect to produce another document on abstractmath.org that will include this example and others. A link willl be posted here when it is done.

This is my first experiment at posting an active Mathematica CDF document on my blog. To manipulate the graph below, you must have Wolfram CDF Player installed on your computer. It is available free from their website.

This is a new presentation of old work. It is a graph of a certain fifth degree polynomial and its first four derivatives.

The buttons allow you to choose how many derivatives to show and the slider allows you to show the graphs from x=-4 up to a certain point.

How graphs like this could be used for teaching purposes

You could show this in class, but the best way to learn from it would be to make it part of a discussion in which each student had access to a private copy of the graph.  (But you may have other ideas about how to use a graph like this.  Share them!)

Some possible discussion questions:

  1. Click button 1. Now you see the function and the derivative. Move the slider all the way to the left and then slowly move it to the right.  When the function goes up the derivative is positive.  What other things do you notice when you do this?
  2. If you were told only that one of the functions is the derivative of the other, how would you rule out the wrong possibility?
  3. What can you tell about the zeroes of the function by looking at the derivative?
  4. Look at the interval between x=1.5 and x=1.75.  Does the function have one or two zeroes in that interval?  On my screen it looks as if the curve just barely  gets above the x axis in that interval.  What does that say about it having one or two zeroes?  How could you verify your answer?
  5. Click button 2.  Now you have the function and first and second derivatives.  What can you say about maxima, minima and concavity of the function?
  6. Find relationships between the first and second derivatives.
  7. Now click button 4.  Evidently the 4th derivative is a straight line with positive slope.  Assume that it is.  What does that tell you about the graph of the third derivative?
  8. What characteristics of the graph of the function can you tell from knowing that the fourth derivative is a straight line of positive slope?
  9. What can you say about the formula for the function knowing that the fourth derivative is a straight line of positive slope?
  10. Suppose you were given this graph and told that it was a graph of a function and its first four derivatives and nothing else.  Specifically, you do not know that the fourth derivative is a straight line.  Give a detailed explanation of how to tell which curve is the function and which curve is each specific derivative.

Making this manipulable graph

I posted this graph and a lot of others several years ago on abstractmath.org.  (It is the ninth graph down).  I fiddled with this polynomial until I got the function and all four derivatives to be separated from each other.  All the roots of the function and all its derivatives are real and all are shown.  Isn’t this gorgeous?

To get it to show up properly on the abmath site I had to thicken the graph line.  Otherwise it still showed up on the screen but when I printed it on my inkjet printer the curves disappeared. That seems to be unnecessary now.

Mathematica 8.0 has default colors for graphs, but I kept the old colors because they are easier to distinguish, for me anyway (and I am not color blind).

Inserting CDF documents into html

A Wolfram document explains how to do this.  I used the CDF plugin for WordPress.  WordPress requires that, to use the plugin, you operate your blog from your own server, not from WordPress.com.  That is the main reason for the recent change of site.

The Mathematica files are New5thDegreePolynomial.nb and New5thDegreePolynomial.cdf on my public folder of Mathematica files.  You may download the .cdf file directly and view it using CDF player if you have trouble with the embedded version. To see the code you need to download the .nb file and open all cells.

Here are some notes and questions on the process.  When I find learn more about any of these points I will post the information.

  1. At the moment I don’t know how to get rid of the extra space at the top of the graph.
  2. I was surprised that I could not click on the picture and shrink or expand it.
  3. It might be annoying for a student to read the questions above and have to go up and down the screen to see the graph.  I had envisioned that the teacher would ask the questions and have the students play with the graph and erupt with questions and opinions.  But you could open two copies of the .cdf file (or this blog) and keep one window showing the graph while the other window showed the questions.
  4. Which raises a question:  Could it be possible to program the graph with a button that when pushed would make the graph (only) appear in another window?

Other approaches

  1. I have experimented with Khan Academy type videos using CDF files.  I made a screen shot and at a certain point I pressed a button and the graph appropriately changed.   I expect to produce an example video which I can make appear on this blog (which supposedly can show videos, but I haven’t tried that yet.)
  2. It should be possible to have a CDF in which the student saw the graph with instructional text underneath it equipped with next and back buttons.  The next button would trigger changes in the picture and replace the text with another sentence or two.  This could be instead of spoken stuff or additional to it (which would be a lot of work).  Has anyone tried this?

Note

My reaction to Khan Academy was mostly positive.  One thing that struck me that no one seems to have commented on is that the lectures are short. They cover one aspect (one definition or one example or what one theorem says) in what felt to me like ten or fifteen minutes.  This means that you can watch it and easily go back and forth using the controls on the video display.  If it were a 50-minute lecture it would be much harder to find your way around.

I think most students are grasshoppers:  When reading text, they jump back and forth, getting the gist of some idea, looking ahead to see where it goes, looking back to read something again, and so on.  Short videos allow you to do this with spoken lectures. That seems to me remarkably useful.

Send to Kindle

Comparing graph and cograph (Version 2)

This post has been superseded by the post Demos for graph and cograph of calculus functions.

New Version 6 July 2011

This is a new version of a post originally created on 30 June, 2011. –Charles Wells

When you put the graph and cograph of a function with parameters side by side, interesting things may happen.  I have created the files CographExample.nb and CographExample.cdf to illustrate this.

The .nb form is a Mathematica Notebook, which requires Mathematica to run and allows you to manipulate the objects and change the code in the notebook as you wish.  The .cdf file contains the same material and can be viewed using Mathematica CDF Player, which is available free here.  The CDF Player allows you to change the parameters with the slidebars, so that you can experience the phenomena discusses in the example, but you cannot otherwise modify the file.

You cannot include a Mathematica computable document directly into a Word Press document, so here are screenshots of the cograph example with several different settings of its parameters.

Some Screenshots and sample questions follow.  These not in the original version.  I added these thanks to encouragement by Sam Alexander.

Screenshots


Questions for discussion

My idea is that students will manipulate the slider to see what happens and do some algebra on the relations between a, b and x to explain the phenomena that occur.

Questions about the graph (left figure).

G1. Prove that the two straight lines are parallel for any choice of a and b.

G2. When do the red and blue straight lines in the graph coincide? Answer: The lines coincide when a=1 or b=0 .

  • “When do the…” translates into “for what values of a and b do the…”. I predict that which way you ask the question will make a big difference for some students. To answer this question, you are not solving for x but for a and b. If you ask “When…” they have to discover this for themselves.
  • The answer is disjunctive: This may be a new idea for some of the students.

G3. Find a formula in terms of a and b for the distance between the two straight lines in the graph. Answer: |b-ab|.

Questions about the cograph.

C1. When do the red and blue arrows in the cograph coincide? Answer: Same as answer to Question G1.

C2. In the cograph, for what aand b are the arrow targets for a given choice of x closer together than the arrow sources? Answer: $latex  |a|>1$. b is irrelevant.

C3. Manipulate a and b. For some values the blue arrows all cross each other at the same point. (Same question for red arrows.) When does this happen? Answer: When a is negative.

  • The abstract setting of the cograph is shifted by this question (and the next) as follows: The arrows originally provided a visual pointer from the input to the output of the function. All of a sudden we are treating them as mathematical objects(straight line segments in the plane).
  • The abstraction is also broken in another way: The space between the source line and the target line is just a visual separation, but after this question both lines lie on the xy plane. The question turns a visual illustration into a mathematical object.

C4.  Describe the common point where all the red arrows cross when a is negative. (Same question for blue arrows.) Answer: The point is \left(\frac{b}{1-a},\frac{3 a}{a-1}\right).

Send to Kindle

Endograph and cograph of real functions

This post is covered by the Creative Commons Attribution – ShareAlike 3.0 License, which means you may use, adapt and distribute the work provided you follow the requirements of the license.

Introduction

In the article Functions: Images and Metaphors in abstractmath I list a bunch of different images or metaphors for thinking about functions. Some of these metaphors have realizations in pictures, such as a graph or a surface shown by level curves. Others have typographical representations, as formulas, algorithms or flowcharts (which are also pictorial). There are kinetic metaphors — the graph of {y=x^2} swoops up to the right.

Many of these same metaphors have realizations in actual mathematical representations.

Two images (mentioned only briefly in the abstractmath article) are the cograph and the endograph of a real function of one variable. Both of these are visualizations that correspond to mathematical representations. These representations have been used occasionally in texts, but are not used as much as the usual graph of a continuous function. I think they would be useful in teaching and perhaps even sometimes in research.

A rough and unfinished Mathematica notebook is available that contains code that generate graphs and cographs of real-valued functions. I used it to generate most of the examples in this post, and it contains many other examples. (Note [1].)

The endograph of a function

In principle, the endograph (Note [2]) of a function {f} has a dot for each element of the domain and of the codomain, and an arrow from {x} to {f(x)} for each {x} in the domain. For example, this is the endograph of the function {n\mapsto n^2+1 \pmod 11} from the set {\{0,1,\ldots,10\}} to itself:


“In principle” means that the entire endograph can be shown only for small finite functions. This is analogous to the way calculus books refer to a graph as “the graph of the squaring function” when in fact the infinite tails are cut off.

Real endographs

I expect to discuss finite endographs in another post. Here I will concentrate on endographs of continuous functions with domain and codomain that are connected subsets of the real numbers. I believe that they could be used to good effect in teaching math at the college level.

Here is the endograph of the function {y=x^2} on the reals:

I have displayed this endograph with the real line drawn in the usual way, with tick marks showing the location of the points on the part shown.

The distance function on the reals gives us a way of interpreting the spacing and location of the arrowheads. This means that information can be gleaned from the graph even though only a finite number of arrows are shown. For example you see immediately that the function has only nonnegative values and that its increase grows with {x}.(See note [3]).

I think it would be useful to show students endographs such as this and ask them specific questions about why the arrows do what they do.

For the one shown, you could ask these questions, probably for class discussion rather that on homework.

  • Explain why most of the arrows go to the right. (They go left only between 0 and 1 — and this graph has such a coarse point selection that it shows only two arrows doing that!)
  • Why do the arrows cross over each other? (Tricky question — they wouldn’t cross over if you drew the arrows with negative input below the line instead of above.)
  • What does it say about the function that every arrowhead except two has two curves going into it?

Real Cographs

The cograph (Note [4] of a real function has an arrow from input to output just as the endograph does, but the graph represents the domain and codomain as their disjoint union. In this post the domain is a horizontal representation of the real line and the codomain is another such representation below the domain. You may also represent them in other configurations (Note [5]).

Here is the cograph representation of the function {y=x^2}. Compare it with the endograph representation above.

Besides the question of most arrows going to the right, you could also ask what is the envelope curve on the left.

More examples

Absolute value function

Arctangent function

Notes

[1] This website contains other notebooks you might find useful. They are in Mathematica .nb, .nbp, or .cdf formats, and can be read, evaluated and modified if you have Mathematica 8.0. They can also be made to appear in your browser with Wolfram CDF Player, downloadable free from Wolfram site. The CDF player allows you to operate any interactive demos contained in the file, but you can’t evaluate or modify the file without Mathematica.

The notebooks are mostly raw code with few comments. They are covered by the Creative Commons Attribution – ShareAlike 3.0 License, which means you may use, adapt and distribute the code following the requirements of the license. I am making the files available because I doubt that I will refine them into respectable CDF files any time soon.

[2] I call them “endographs” to avoid confusion with the usual graphs of functions — — drawings of (some of) the set of ordered pairs {x,f(x)} of the function.

[3] This is in contrast to a function defined on a discrete set, where the elements of the domain and codomain can be arranged in any old way. Then the significance of the resulting arrangement of the arrows lies entirely in which two dots they connect. Even then, some things can be seen immediately: Whether the function is a cycle, permutation, an involution, idempotent, and so on.

Of course, the placement of the arrows may tell you more if the finite sets are ordered in a natural way, as for example a function on the integers modulo some integer.

[4] The text [1] uses the cograph representation extensively. The word “cograph” is being used with its standard meaning in category theory. It is used by graph theorists with an entirely different meaning.

[5] It would also be possible to show the domain codomain in the usual {x-y} plane arrangement, with the domain the {x} axis and the codomain the {y} axis. I have not written the code for this yet.

References

[1] Sets for Mathematics, by F. William Lawvere and Robert Rosebrugh. Cambridge University Press, 2003.

[2] Martin Flashman’s website contains many exampls of cographs of functions, which he calls mapping diagrams.

Send to Kindle

Representations 2

Introduction

In a recent post I began a discussion of the mental, physical and mathematical representations of a mathematical object. The discussion continues here. Mathematicians, linguists, cognitive scientists and math educators have investigate some aspects of this topic, but there are many subtle connections between the different ideas which need to be studied.

I don’t have any overall theoretical grasp of these relationships. What I will do here is grope for an overall theory by mentioning a whole bunch of fine points. Some of these have been discussed in the literature and some (as far as I know) have not been discussed.  Many of them (I hope)  can be described as “an obvious fact about representations but no one has pointed it out before”.  Such fine points could be valuable; I think some scholars who have written about mathematical discourse and math in the classroom are not aware of many of these facts.

I am hoping that by thrashing around like this here (for graphs of functions) and for other concepts (set, function, triangle, number …) some theoretical understanding may emerge of what it means to understand math, do math, and talk about math.

The graph of a function

Let’s look at the graph of the function {y=x^3-x}.

What you are looking at is a physical representation of the graph of the function. The graph creates in your brain a mental representation of the graph of the function. These are subtly related to each other and to the mathematical definition of the graph.

Fine points

  1. The mathematical definition [2] of the graph of this function is: The set of ordered pairs of numbers {(x,x^3-x)} for all real numbers {x}.
  2. In the physical representation, each point {(x,x^3-x)} is shown in a location determined by the conventional {x-y} coordinate system, which uses a straight-line representation of the real numbers with labels and ticks.
    • The physical representation makes use of the fact that the function is continuous. It shows the graph as a curving line rather than a bunch of points.
    • The physical representation you are looking at is not the physical representation I am looking at. They are on different computer screens or pieces of paper. We both expect that the representations are very similar, in some sense physically isomorphic.
    • “Location” on the physical representation is a physical idea. The mathematical location on the mathematical graph is essentially the concept of the physical location refined as the accuracy goes to infinity. (This last statement is a metaphor attached to a genuine mathematical construction, for example Cauchy sequences.)
  3. The mathematical definition of “graph” and the physical representation are related by a metaphor. (See Note 1.)
    • The physical curve in blue in the picture corresponds via the metaphor to the graph in the mathematical sense: in this way, each location on the physical curve corresponds to an ordered pair of the form {(x,x^3-x)}.
    • The correspondence between the locations and the pairs is imperfect. You can’t measure with infinite accuracy.
    • The set of ordered pairs {(x,x^3-x)} form a parametrized curve in the mathematical sense. This curve has zero thickness. The curve in the physical representation has positive thickness.
    • Not all the points in the mathematical graph actually occur on the physical curve: The physical curve doesn’t show the left and right infinite tails.
    • The physical curve is drawn to show some salient characteristics of the curve, such as its extrema and inflection points. This is expected by convention in mathematical writing. If the graph had left out a maximum, for example, the author would be constrained (by convention!) to say so.
    • An experienced mathematician or advanced student understands the fine points just listed. A newbie may not, and may draw false conclusions about the function from the graph. (Note 2.)
  4. If you are a mathematician or at least a math student, seeing the physical graph shown above produces a mental image(see Note 3.) of the graph in your mind.
  5. The mathematical definition and the mental image are connected by a metaphor. This is not the same metaphor as the one that connects the physical representation and the mathematical definition.
    • The curve I visualize in my mental representation has an S shape and so does the physical representation. Or does it? Isn’t the S-ness of the shape a fact I construct mentally (without consciously intending to do so!)?
    • Does the curve in the mental rep have thickness? I am not sure this is a meaningful question. However, if you are a sufficiently sophisticated mathematician, your mental image is annotated with the fact that the curve has zero thickness. (See Note 4.)
    • The curve in your mental image of the curve may very well be blue (just because you just looked at my picture) but you must have an annotation to the effect that that is irrelevant! That is the essence of metaphor: Some things are identified with each other and others are emphatically not identified.
    • The coordinate axes do exist in the physical representation and they don’t exist in the mathematical definition of the graph. Of course they are implied by the definition by the properties of the projection functions from a product. But what about your mental image of the graph? My own image does not show the axes, but I do “know” what the coordinates of some of the points are (for example, {(-1,0)}) and I “see” some points (the local maximum and the local minimum) whose coordinates I can figure out.

Notes

1. This is metaphor in the sense lately used by cognitive scientists, for example in [6]. A metaphor can be described roughly as two mental images in which certain parts of one are identified with certain parts of another, in other words a pushout. The rhetorical use of the word “metaphor” requires it to be a figure of speech expressed in a certain way (the identification is direct rather than expressed by “is like” or some such thing.)  In my use in this article a metaphor is something that occurs in your brain.  The form it takes in speech or writing is not relevant.

2. I have noticed, for example, that some students don’t really understand that the left and right tails go off to infinity horizontally as well as vertically.   In fact, the picture above could mislead someone into thinking the curve has vertical asymptotes: The right tail looks like it goes straight up.  How could it get to x equals a billion if it goes straight up?

3. The “mental image” is of course a physical structure in your brain.  So mental representations are physical representations.

4. I presume this “annotation” is some kind of physical connection between neurons or something.  It is clear that a “mental image” is some sort of physical construction or event in the brain, but from what little I know about cognitive science, the scientists themselves are still arguing about the form of the construction.  I would appreciate more information on this. (If the physical representation of mental images is indeed still controversial, this says nothing bad about cognitive science, which is very new.)

References

[1] Mental Representations in Math (previous post).

[2] Definitions (in abstractmath).

[3] Lakoff, G. and R. E. Núñez (2000), Where Mathematics Comes From. Basic Books.

Send to Kindle

The Mathematical Definition of Function

Introduction

This post is a completely rewritten version of the abstractmath article on the definition of function. Like every part of abstractmath, the chapter on functions is designed to get you started thinking about functions. It is no way complete. Wikipedia has much more complete coverage of mathematical functions, but be aware that the coverage is scattered over many articles.

The concept of function in mathematics is as important as any mathematical idea. The mathematician’s concept of function includes the kinds of functions you studied in calculus but is much more abstract and general. If you are new to abstract math you need to know:

  • The precise meaning of the word “function” and other concepts associated with functions. That’s what this section is about.
  • Notation and terminology for functions. (That will be a separate section of abstractmath.org which I will post soon.)
  • The many different kinds of functions there are. (See Examples of Functions in abmath).
  • The many ways mathematicians think about functions. The abmath article Images and Metaphors for Functions is a stub for this.

I will use two running examples throughout this discussion:

  • {F} is the function defined on the set {\left\{1,\,2,3,6 \right\}} as follows: {F(1)=3,\,\,\,F(2)=3,\,\,\,F(3)=2,\,\,\,F(6)=1}. This is a function defined on a finite set by explicitly naming each value.
  • {G} is the real-valued function defined by the formula {G(x)={{x}^{2}}+2x+5}.

Specification of function

We start by giving a specification of “function”. (See the abstractmath article on specification.) After that, we get into the technicalities of the definitions of the general concept of function.

Specification: A function {f} is a mathematical object which determines and is completely determined bythe following data:

  • {f} has a domain, which is a set. The domain may be denoted by {\text{dom }f}.
  • {f} has a codomain, which is also a set and may be denoted by {\text{cod }f}.
  • For each element {a} of the domain of {f}, {f} has a value at {a}, denoted by {f(a)}.
  • The value of {f} at {a} is completely determined by {a} and {f} .
  • The value of {f} at {a} must be an element of the codomain of {f}.

The operation of finding {f(a)} given {f} and {a} is called evaluation.

Examples

  • The definition above of the finite function {F} specifies that the domain is the set {\left\{1,\,2,\,3,\,6 \right\}}. The value of {F} at each element of the domain is given explicitly. The value at 3, for example, is 2, because the definition says that {F(2) = 3}. The codomain of {F} is not specified, but must include the set {\{1,2,3\}}.
  • The definition of {G} above gives the value at each element of the domain by a formula. The value at 3, for example, is {G(3)=3^2+2\cdot3+5=20}. The definition does not specify the domain or the codomain. The convention in the case of functions defined on the real numbers by a formula is to take the domain to be all real numbers at which the formula is defined. In this case, that is every real number, so the domain is {{\mathbb R}}. The codomain must include all real numbers greater than or equal to 4. (Why?)

Comment: The formula above that defines the function G in fact defines a function of complex numbers (even quaternions).

Definition of function

In the nineteenth century, mathematicians realized that it was necessary for some purposes (particularly harmonic analysis) to give a mathematical definition of the concept of function. A stricter version of this definition turned out to be necessary in algebraic topology and other fields, and that is the one I give here.

To state this definition we need a preliminary idea.

The functional property

A set R of ordered pairs has the functional property if two pairs in R with the same first coordinate have to have the same second coordinate (which means they are the same pair).

Examples

  • The set {\{(1,2), (2,4), (3,2), (5,8)\}} has the functional property, since no two different pairs have the same first coordinate. It is true that two of them have the same second coordinate, but that is irrelevant.
  • The set {\{(1,2), (2,4), (3,2), (2,8)\}} does not have the functional property. There are two different pairs with first coordinate 2.
  • The graphs of functions in beginning calculus have the functional property.
  • The empty set {\emptyset} has the functional property .

Example: Graph of a function defined by a formula

The graph of the function {G} given above has the functional property. The graph is the set

\displaystyle \left\{ (x,{{x}^{2}}+2x+5)\,\mathsf{|}\,x\in {\mathbb R} \right\}.

If you repeatedly plug in one real number over and over, you get out the same real number every time. Example:

  • if {x = 0}, then {{{x}^{2}}+2x+5=5}.  You get 5 every time you plug in 0.
  • if {x = 1}, then {{{x}^{2}}+2x+5=8}.
  • if {x =-2}, then {{{x}^{2}}+2x+5=5}.

This set has the functional property because if {x} is any real number, the formula {{{x}^{2}}+2x+5} defines a specific real number. (This description of the graph implicitly assumes that {\text{dom } G={\mathbb R}}.)  No other pair whose first coordinate is {-2} is in the graph of {G}, only {(-2, 5)}. That is because when you plug {-2} into the formula {{{x}^{2}}+2x+5}, you get {5} every time. Of course, {(0, 5)} is in the graph, but that does not contradict the functional property. {(0, 5)} and {(-2, 5)} have the same second coordinate, but that is OK.

How to think about the functional property

The point of the functional property is that for any pair in the set of ordered pairs, the first coordinate determines what the second one is. That’s why you can write “{G(x)}” for any {x } in the domain of {G} and not be ambiguous.

Mathematical definition of function

A function{f} is a mathematical structure consisting of the following objects:

  • A set called the domain of {f}, denoted by {\text{dom } f}.
  • A set called the codomain of {f}, denoted by {\text{cod } f}.
  • A set of ordered pairs called the graph of { f}, with the following properties:
    • {\text{dom } f} is the set of all first coordinates of pairs in the graph of {f}.
    • Every second coordinate of a pair in the graph of {f} is in {\text{cod } f} (but {\text{cod } f} may contain other elements).
    • The graph of {f} has the functional property. Using arrow notation, this implies that {f:A\rightarrow B}.

Examples

  • Let {F} have graph {\{(1,2), (2,4), (3,2), (5,8)\}} and define {A = \{1, 2, 3, 5\}} and {B = \{2, 4, 8\}}. Then {F:A\rightarrow B} is a function.
  • Let {G} have graph {\{(1,2), (2,4), (3,2), (5,8)\}} (same as above), and define {A = \{1, 2, 3, 5\}} and {C = \{2, 4, 8, 9, 11, \pi, 3/2\}}. Then {G:A\rightarrow C} is a (admittedly ridiculous) function. Note that all the second coordinates of the graph are in {C}, along with a bunch of miscellaneous suspicious characters that are not second coordinates of pairs in the graph.
  • Let {H} have graph {\{(1,2), (2,4), (3,2), (5,8)\}}. Then {H:A\rightarrow {\mathbb R}} is a function.

According to the definition of function, {F}, {G} and {H} are three different functions.

Identity and inclusion

Suppose we have two sets A and B with {A\subseteq B}.

  • The identity function on A is the function {{{\text{id}}_{A}}:A\rightarrow A} defined by {{{\text{id}}_{A}}(x)=x} for all{x\in A}. (Many authors call it {{{1}_{A}}}).
  • The inclusion function from A to B is the function {i:A\rightarrow B} defined by {i(x)=x} for all {x\in A}. Note that there is a different function for each pair of sets A and B for which {A\subseteq B}. Some authors call it {{{i}_{A,\,B}}} or {\text{in}{{\text{c}}_{A,\,B}}}.

Remark The identity function and an inclusion function for the same set A have exactly the same graph, namely {\left\{ (a,a)|a\in A \right\}}.

Graphs and functions

  • If {f} is a function, the domain of {f} is the set of first coordinates of all the pairs in {f}.
  • If {x\in \text{dom } f}, then {f(x)} is the second coordinate of the only ordered pair in {f} whose first coordinate is {x}.

Examples

The set {\{(1,2), (2,4), (3,2), (5,8)\}} has the functional property, so it is the graph of a function. Call the function {H}. Then its domain is {\{1,2,3,5\}} and {H(1) = 2} and {H(2) = 4}. {H(4)} is not defined because there is no ordered pair in H beginning with {4} (hence {4} is not in {\text{dom } H}.)

I showed above that the graph of the function {G}, ordinarily described as “the function {G(x)={{x}^{2}}+2x+5}”, has the functional property. The specification of function requires that we say what the domain is and what the value is at each point. These two facts are determined by the graph.

Other definitions of function

Because of the examples above, many authors define a function as a graph with the functional property. Now, the graph of a function {G} may be denoted by {\Gamma(G)}.  This is an older, less strict definition of function that doesn’t work correctly with the concepts of algebraic topology, category theory, and some other branches of mathematics.

For this less strict definition of function, {G=\Gamma(G)}, which causes a clash of our mental images of “graph” and “function”. In every important way except the less-strict definition, they ARE different!

A definition is a device for making the meaning of math technical terms precise. When a mathematician think of “function” they think of many aspects of functions, such as a map of one shape into another, a graph in the real plane, a computational process, a renaming, and so on. One of the ways of thinking of a function is to think about its graph. That happens to be the best way to define the concept of function.  (It is the less strict definition and it is a necessary concept in the modern definition given here.)

The occurrence of the graph in either definition doesn’t make thinking of a function in terms of its graph the most important way of visualizing  it. I don’t think it is even in the top three.

Send to Kindle