Tag Archives: definition

Thinking about a function as a mathematical object

A mathematician’s mental representation of a function is generally quite rich and may involve many different metaphors and images kept in mind simultaneously. The abmath article on metaphors and images for functions discusses many of these representations, although the article is incomplete. This post is a fairly thorough rewrite of the discussion in that article of the representation of the concept of “function” as a mathematical object. You must think of functions as math objects when you are taking the rigorous view, which happens when you are trying to prove something about functions (or large classes of functions) in general.

What often happens is that you visualize one of your functions in many of the ways described in this article (it is a calculation, it maps one space to another, its graph is bounded, and so on) but those images can mislead you. So when you are completely stuck, you go back to thinking of the function as an axiomatically-defined mathe­matical structure of some sort that just sits there, like a complicated machine where you can see all the parts and how they relate to each other. That enables you to prove things by strict logical deduction. (Mathematicians mostly only go this far when they are desperate. We would much rather quote somebody’s theorem.) This is what I have called the dry bones approach.

The “mathematical structure” is most commonly a definition of function in terms of sets and axioms. The abmath article Specification and definition of “function” discusses the usual definitions of “function” in detail.

Example

This example is intended to raise your consciousness about the possibilities for functions as objects.

Consider the function $f:\mathbb{R}\to\mathbb{R}$ defined by $f(x)=2{{\sin }^{2}}x-1$. Its value can be computed at many different numbers but it is a single, static math object.

You can apply operators to it

  • Just as you can multiply a number by $2$, you can multiply $f$ by $2$.   You can say “Let $g(x)=2f(x)$” or “Let $g=2f$”. Multiplying a numerical function by $2$ is an operator that take the function $f$ to $2f$. Its input is a function and its output is another function. Then the value of $g$ (which is $2f$) at any real $x$ is $g(x)=2f(x)=4{{\sin }^{2}}x-2$. The notation  “$g=2f$” reveals that mathematicians think of $f$ as a single math object just as the $3$ in the expression “$2\times 3$” represents the number $3$ as a single object.
  • But you can’t do arithmetic operations to functions that don’t have numerical output, such as the function $\text{FL}$ that takes an English word to its first letter, so $\text{FL}(`\text{wolf’})=`\text{w’}$. (The quotes mean that I am writing about the word ‘wolf’ and the letter ‘w’.) The expression $2\times \text{FL}(`\text{wolf’})$ doesn’t make sense because ‘w’ is a letter, not a number.
  • You can find the derivative.  The derivative operator is a function from differentiable functions to functions. Such a thing is usually called an operator.  The derivative operator is sometimes written as $D$, so $Df$ is the function defined by: “$(Df)(x)$ is the slope of the tangent line to $f$ at the point $(x,f(x)$.” That is a perfectly good definition. In calculus class you learn formulas that allow you to calculate $(Df)(x)$ (usually called “$f'(x)$”) to be $4 \sin (x) \cos (x)$.

Like all math objects, functions may have properties

  • The function defined by $f(x)=2{{\sin}^{2}}x-1$ is differentiable, as noted above. It is also continuous.
  • But $f$ is not injective. This means that two different inputs can give the same output. For example,$f(\frac{\pi}{3})=f(\frac{4\pi}{3})=\frac{1}{2}$. This is a property of the whole function, not individual values. It makes no sense to say that $f(\frac{\pi}{3})$ is injective.
  • The function $f$ is periodic with period $2\pi$, meaning that for any $x$, $f(x+2\pi)=f(x)$.     It is the function itself that has period $2\pi$, not any particular value of it.  

As a math object, a function can be an element of a set

  • For example,$f$ is an element of the set ${{C}^{\infty }}(\mathbb{R})$ of real-valued functions that have derivatives of all orders.
  • On ${{C}^{\infty }}(\mathbb{R})$, differentiation is an operator that takes a function in that set to another function in the set.   It takes $f(x)$ to the function $4\sin x\cos x$.
  • If you restrict $f$ to the unit interval, it is an element of the function space ${{\text{L}}^{2}}[0,1]$.   As such it is convenient to think of it as a point in the space (the whole function is the point, not just values of it).    In this particular space, you can think of the points as vectors in an uncountably-infinite-dimensional space. (Ideas like that weird some people out. Do not worry if you are one of them. If you keep on doing math, function spaces will seem ordinary. They are OK by me, except that I think they come in entirely too many different kinds which I can never keep straight.) As a vector, $f$ has a norm, which you can think of as its length. The norm of $f$ is about $0.81$.

The discussion above shows many examples of thinking of a function as an object. You are thinking about it as an undivided whole, as a chunk, just as you think of the number $3$ (or $\pi$) as just a thing. You think the same way about your bicycle as a whole when you say, “I’ll ride my bike to the library”. But if the transmission jams, then you have to put it down on the grass and observe its individual pieces and their relation to each other (the chain came off a gear or whatever), in much the same way as noticing that the function $g(x)=x^3$ goes through the origin and looks kind of flat there, but at $(2,8)$ it is really rather steep. Phrases like “steep” and “goes through the origin” are a clue that you are thinking of the function as a curve that goes left to right and levels off in one place and goes up fast in another — you are thinking in a dynamic, not a static way like the dry bones of a math object.

Send to Kindle

The definition of “function”

 

This is the new version of the abstractmath article on the definition of function. I had to adapt the formatting and some of it looks weird, but legible. It is prettier on abstractmath.org.

I expect to announce new revisions of other abmath articles on this blog, with links, but not to publish them here. This article brings out a new point of view about defining functions that I wanted to call attention to, so I am publishing it here, as well.

 

FUNCTIONS: SPECIFICATION AND DEFINITION

It is essential that you understand many of the images, metaphors and terminology that mathe­maticians use when they think and talk about functions. For many purposes, the precise mathematical definition of "function" does not play much of a role when you are trying to understand particular kinds of functions. But there is one point of view about functions that has resulted in fundamental progress in math:

 

 

A function is a mathematical object.

To deal with functions in that way you need a precise definition of "function". That is what this article gives you.

  • The article starts by giving a specification of "function".
  • After that, we get into the technicalities of the definitions of the general concept of function.
  • Things get complicated because there are several inequivalent definitions of "function" in common use.

Specification of "function"

A function $f$ is a mathematical object which determines and is completely determined by the following data:

(DOM) $f$ has a domain, which is a set. The domain may be denoted by $\text{dom} f$.

(COD) $f$ has a codomain, which is also a set and may be denoted by $\text{cod} f$.

(VAL) For each element $a$ of the domain of $f$, $f$ has a value at $a$, denoted by $f(a)$.

(FP) The value of $f$ at $a$ is completely determined by $a$ and $f$.

(VIC) The value of $f$ at $a$ must be an element of the codomain of $f$.

  • The operation of finding $f(a)$ given $f$ and $a$ is called evaluation.
  • "FP" means functional property.
  • "VIC" means "value in codomain".

Examples

The examples of functions chapter contains many examples. The two I give here provide immediate examples.

A finite function

Let $F$ be the function defined on the set $\left\{1,\,2,3,6 \right\}$ as follows: $F(1)=3,\,\,\,F(2)=3,\,\,\,F(3)=2,\,\,\,F(6)=1$. This is the function called "Finite'' in the chapter on examples of functions.

  • The definition of $F$ says "$F$ is defined on the set $\left\{1,\,2,\,3,\,6 \right\}$". That phrase means that the domain is that set.
  • The value of $F$ at each element of the domain is given explicitly. The value at 3, for example, is 2, because the definition says that $F(2) = 3$. No other reason needs to be given. Mathematical definitions can be arbitrary.
  • The codomain of $F$ is not specified, but must include the set $\{1,2,3\}$. The codomain of a function is often not specified when it is not important — which is most of the time in freshman calculus (for example).

A real-valued function

Let $G$ be the real-valued function defined by the formula $G(x)={{x}^{2}}+2x+5$.

  • The definition of $G$ gives the value at each element of the domain by a formula. The value at $3$, for example, is $G(3)=3^2+2\cdot3+5=20$.
  • The definition of $G$ does not specify the domain. The convention in the case of functions defined on the real numbers by a formula is to take the domain to be all real numbers at which the formula is defined. In this case, that is every real number, so the domain is $\mathbb{R}$.
  • The definition does not specify the codomain, either. However, must include all real numbers greater than or equal to 4. (Why?)

What the specification means

  • The specification guarantees that a function satisfies all five of the properties listed.
  • The specification does not define a mathematical structure in the way mathematical structures have been defined in the past: In particular, it does not require a function to be one or more sets with structure.
  • Even so, it is useful to have the specification, because:

     

     

    Many mathematical definitions
    introduce extraneous technical elements
    which clutter up your thinking
    about the object they define.

     

     

    I will say more about this when I give the various definitions that are in use.

History

Until late in the nineteenth century, functions were usually thought of as defined by formulas (including infinite series). Problems arose in the theory of harmonic analysis which made mathematicians require a more general notion of function. They came up with the concept of function as a set of ordered pairs with the functional property (discussed below), and that understanding revolutionized our understanding of math.

This discussion is an over­simpli­fication of the history of mathe­matics, which many people have written thick books about. A book relevant to these ideas is Plato's Ghost, by Jeremy Gray.

In particular, this definition, along with the use of set theory, enabled abstract math (ahem) to become a common tool for understanding math and proving theorems. It is conceivable that some of you may wish it hadn't. Well, tough.

The more modern definition of function given here (which builds on the older definition) came into use beginning in the 1950's. The strict version became necessary in algebraic topology and is widely used in many fields today.

The concept of function as a formula never disappeared entirely, but was studied mostly by logicians who generalized it to the study of function-as-algorithm. Of course, the study of algorithms is one of the central topics of modern computing science, so the notion of function-as-formula (updated to function-as-algorithm) has achieved a new importance in recent years.

To state both the old abstract definition and the modern one, we need a preliminary idea.

The functional property

A set $P$ of ordered pairs has the functional property if two pairs in $P$ with the same first coordinate have to have the same second coordinate (which means they are the same pair). In other words, if $(x,a)$ and $(x,b)$ are both in $P$, then $a=b$.

How to think about the functional property

The point of the functional property is that for any pair in the set of ordered pairs, the first coordinate determines what the second one is. That's why you can write "$G(x)$'' for any $x $ in the domain of $G$ and not be ambiguous.

Examples

  • The set $\{(1,2), (2,4), (3,2), (5,8)\}$ has the functional property, since no two different pairs have the same first coordinate. Note that there are two different pairs with the same second coordinate. This is irrelevant to the functional property.
  • The set $\{(1,2), (2,4), (3,2), (2,8)\}$ does not have the functional property. There are two different pairs with first coordinate 2.
  • The empty set $\emptyset$ has the function property vacuously.

Graph of a function.

Example: graph of a function defined by a formula

In calculus books, a picture like this one (of part of $y=x^2+2x+5$) is called a graph. Here I use the word "graph" to denote the set of ordered pairs \[\left\{ (x,{{x}^{2}}+2x+5)\,\mathsf{|}\,x\in \mathbb{R } \right\}\] which is a mathematical object rather than some ink on a page or pixels on a screen.

The graph of any function studied in beginning calculus has the functional property. For example, the set of ordered pairs above has the functional property because if $x$ is any real number, the formula ${{x}^{2}}+2x+5$ defines a specific real number.

  • if $x = 0$, then ${{x}^{2}}+2x+5=5$, so the pair $(0, 5)$ is an element of the graph of $G$. Each time you plug in $0$ in the formula you get 5.
  • if $x = 1$, then ${{x}^{2}}+2x+5=8$.
  • if $x = -2$, then ${{x}^{2}}+2x+5=5$.

You can measure where the point $\{-2,5\}$ is on the (picture of) the graph and see that it is on the blue curve as it should be. No other pair whose first coordinate is $-2$ is in the graph of $G$, only $(-2, 5)$. That is because when you plug $-2$ into the formula ${{x}^{2}}+2x+5$, you get $5$ and nothing else. Of course, $(0, 5)$ is in the graph, but that does not contradict the functional property. $(0, 5)$ and $(-2, 5)$ have the same second coordinate, but that is OK.

Modern mathematical definition of function

A function $f$ is a mathematical structure consisting of the following objects:

  • A set called the domain of $f$, denoted by $\text{dom} f$.
  • A set called the codomain of $f$, denoted by $\text{cod} f$.
  • A set of ordered pairs called the graph of $ f$, with the following properties:
  • $\text{dom} f$ is the set of all first coordinates of pairs in the graph of $f$.
  • Every second coordinate of a pair in the graph of $f$ is in $\text{cod} f$ (but $\text{cod} f$ may contain other elements).
  • The graph of $f$ has the functional property.

Using arrow notation, this implies that $f:A\to B$.

Remark

The main difference between the specification of function given previously and this definition is that the definition replaces the statement "$f$ has a value at $a$" by introducing a set of ordered pairs (the graph) with the functional property.

  • This set of ordered pairs is extra structure introduced by the definition mainly in order to make the definition a classical sets-with-structure, which makes the graph, which should be a concept derived from the concept of function, into an apparently necessary part of the function.
  • That suggests incorrectly that the graph is more of a primary intuition that other intuitions such as function as relocator, function as transformer, and other points of view discussed in the article Intuitions and metaphors for functions.

Examples

  • Let $F$ have graph $\{(1,2), (2,4), (3,2), (5,8)\}$ and define $A = \{1, 2, 3, 5\}$ and $B = \{2, 4, 8\}$. Then $F:A\to B$ is a function. In speaking, we would usually say, "$F$ is a function from $A$ to $B$."
  • Let $G$ have graph $\{(1,2), (2,4), (3,2), (5,8)\}$ (same as above), and define $A = \{1, 2, 3, 5\}$ and $C = \{2, 4, 8, 9, 11, \pi, 3/2\}$. Then $G:A\to C$ is a (admittedly ridiculous) function. Note that all the second coordinates of the graph are in $C$, along with a bunch of miscellaneous suspicious characters that are not second coordinates of pairs in the graph.
  • Let $H$ have graph $\{(1,2), (2,4), (3,2), (5,8)\}$. Then $H:A\to \mathbb{R}$ is a function, since $2$, $4$ and $8$ are all real numbers.
  • Let $D = \{1, 2, 5\}$ and $E = \{1, 2, 3, 4, 5\}$. Then there is no function $D\to A$ and no function $E\to A$ with graph $\{(1,2), (2,4), (3,2), (5,8)\}$. Neither $D$ nor $E$ has exactly the same elements as the first coordinates of the graph.

Identity and inclusion

Suppose we have two sets  A and  B with $A\subseteq B$.

  • The identity function on A is the function ${{\operatorname{id}}_{A}}:A\to A$ defined by ${{\operatorname{id}}_{A}}(x)=x$ for all $x\in A$. (Many authors call it ${{1}_{A}}$).
  • When $A\subseteq B$, the inclusion function from $A$ to $B$ is the function $i:A\to B$ defined by $i(x)=x$ for all $x\in A$. Note that there is a different function for each pair of sets $A$ and $B$ for which $A\subseteq B$. Some authors call it ${{i}_{A,\,B}}$ or $\text{in}{{\text{c}}_{A,\,B}}$.

The identity function and an inclusion function for the same set $A$ have exactly the same graph, namely $\left\{ (a,a)|a\in A \right\}$. More about this below.

Other definitions of function

Original abstract definition of function

Definition

Remarks

Possible confusion

Some confusion can result because of the presence of these two different definitions.

Multivalued function

Some older mathematical papers in com­plex func­tion theory do not tell you that their functions are multi­valued. There was a time when com­plex func­tion theory was such a Big Deal in research mathe­matics that the phrase "func­tion theory" meant complex func­tion theory and all the cogno­scenti knew that their functions were multi­valued.

The phrase multivalued function refers to an object that is like a function $f:S\to T$ except that for $s\in S$, $f(s)$ may denote more than one value.

Examples

  • Multivalued functions arose in considering complex functions. In common practice, the symbol $\sqrt{4}$ denoted $2$, although $-2$ is also a square root of $4$. But in complex function theory, the square root function takes on both the values $2$ and $-2$. This is discussed in detail in Wikipedia.
  • The antiderivative is an example of a multivalued operator. For any constant $C$, $\frac{x^3}{3}+C$ is an antiderivative of $x^2$.

A multivalued function $f:S\to T$ can be modeled as a function with domain $S$ and codomain the set of all subsets of $T$. The two meanings are equivalent in a strong sense (naturally equivalent}). Even so, it seems to me that they represent two differ­ent ways of thinking about multivalued functions. ("The value may be any of these things…" as opposed to "The value is this whole set of things.")

The phrases "multivalued function" and "partial function" upset some picky types who say things like, "But a multi­valued func­tion is not a func­tion!". A step­mother is not a mother, either. See the Hand­book article on radial category.

Partial function

A partial function $f:S\to T$ is just like a function except that its input may be defined on only a subset of $S$. For example, the function $f(x)=\frac{1}{x}$ is a partial function from the real numbers to the real numbers.

This models the behavior of computer programs (algorithms): if you consider a program with one input and one output as a function, it may not be defined on some inputs because for them it runs forever (or gives an error message).

In some texts in computing science and mathematical logic, a function is by convention a partial function, and this fact may not be mentioned explicitly, especially in research papers.

New approaches to functions

All the definitions of function given here produce mathematical structures, using the traditional way to define mathematical objects in terms of sets. Such definitions have disadvantages.

Mathematicians have many ways to think about functions. That a function is a set of ordered pairs with a certain property (functional) and possibly some ancillary ideas (domain, codomain, and others) is not the way we usually think about them$\ldots$Except when we need to reduce the thing we are studying to its absolutely most abstract form to make sure our proofs are correct. That most abstract form is what I have called the rigorous view or the dry bones and it is when that reasoning is needed that the sets-with-structure approach has succeeded.

Our practice of abstraction has led us to new approaches to talking about functions. The most important one currently is category theory. Roughly, a category is a bunch of objects together with some arrows going between them that can be composed head to tail. Functions between sets are examples of this: the sets are the objects and the functions the arrows.

This abstracts the idea of function in a way that brings out common ideas in various branches of math. Research papers in many branches of mathematics now routinely use the language of category theory. Categories now appear in some undergraduate math courses, meaning that Someone needs to write a chapter on category theory for abstractmath.org.

Besides category theory, computing scientists have come up with other abstract ways of dealing with functions, for example type theory. It has not come as far along as category theory, but has shown recent signs of major progress.

Both category theory and type theory define math objects in terms of their effect on and relationship with other math objects. This makes it possible to do abstract math entirely without using sets-with-structure as a means of defining concepts.

 

Send to Kindle

Representations of mathematical objects

This is a long post. Notes on viewing.

About this post

A mathematical object, or a type of math object, is represented in practice in a great variety of ways, including some that mathematicians rarely think of as "representations".  

In this post you will find examples and comments about many different types of representations as well as references to the literature. I am not aware that anyone has considered all these different ideas of representation in one place before. Reading through this post should raise your consciousness about what is going on when you do math.  

This is also an experiment in exposition.  The examples are discussed in a style similar to the way a Mathematica command is discussed in the Documentation Center, using mostly nonhierarchical bulleted lists. I find it easy to discover what I want to know when it is written in that way.  (What is hard is discovering the name of a command that will do what I want.)

Types of representations

Using language

  • Language can be used to define a type of object.
  • A definition is intended to be precise enough to determine all the properties that objects of that type all have.  (Pay attention to the two uses of the word "all" in that sentence; they are both significant, in very different ways.)
  • Language can be used to describe an object, exhibiting properties without determining all properties.
  • It can also provide metaphors, making use of one of the basic tools of our brain to understand the world. 
  • The language used is most commonly mathematical English, a special dialect of English.
  • The symbolic language of mathematics (distinct from mathematical English) is used widely in calculations. Phrases from the symbolic language are often embedded in a statement in math English. The symbolic language includes among others algebraic notation and logical notation. 
  • The language may also be a formal language, a language that is mathematically defined and is thus itself a mathematical object. Logic texts generally present the first order predicate calculus as a formal language. 
  • Neither mathematical English nor the symbolic language is a formal language. Both allow irregularities and ambiguities.

Mathematical objects

The representation itself may be a mathematical object, such as:

  • A linear representation of a group. Not only are the groups mathematical objects, so is the representation.
  • An embedding of a manifold into Euclidean space. A definition given in a formal language of the first order predicate calculus of the property of commutativity of binary operations. (Thus a property can be represented as a math object.)

Visual representations

A math object can be represented visually using a physical object such as a picture, graph (in several senses), or diagram.  

  • The visual processing of our brain is our major source of knowledge of the world and takes about a fifth of the brain's processing power.  We can learn many things using our vision that would take much longer to learn using verbal descriptions.  (Proofs are a different matter.)
  • When you look at a graph (for example) your brain creates a mental representation of the graph (see below).

Mental representations

If you are a mathematician, a math object such as "$42$", "the real numbers" or "continuity" has a mental representation in your brain.  

  • In the math ed literature, such a representation is called "mental image", "concept image", "procept", or "schema".   (The word "image" in these names is not thought of as necessarily visual.) 
  • The procept or schema describe all the things that come to mind when you think about a particular math object: The definition, important theorems, visual images, important examples, and various metaphors that help you understand it. 
  • The visual images occuring in a mental schema for an object may themselves be mental representations of physical objects. The examples and theorems may be mental representations of ideas you learned from language or pictures, and so on.  The relationships between different kinds of representations get quite convoluted.

Metaphors

Conceptual metaphors are a particular kind of mental representation of an object which involve mentally associating some aspects of the objects with some aspects of something else — a physical object, an image, an action or another abstract object.

  • A conceptual metaphor may give you new insight into the object.
  • It may also mislead you because you think of properties of the other object that the math object doesn't have.
  • A graph of a function is a conceptual metaphor.
  • When you say that a point on a graph "rises as it goes from left to right" your metaphor is an action. 
  • When you say that the cosets of a normal subgroup of a group "get along" with the group multiplication, your metaphor identifies a property they have with an aspect of human behavior.

Properties of representations

A representation of a math object may or may not

  • determine it completely
  • exhibit some of its properties
  • suggest easy proofs of some theorems
  • provide a useful way of thinking about it
  • mislead you about the object's properties
  • mislead you about what is significant about the object

Examples of representations

This list shows many of the possibilities of representation.  In each case I discuss the example in terms of the two bulleted lists above. Some of the examples are reused from my previous publications.

Functions

Example (F1) "Let $f(x)$ be the function defined by $f(x)=x^3-x$."

  • This is an expression in mathematical English that a fluent reader of mathematical English will recognize gives a definition of a specific function.
  • (F1) is therefore a representation of that function.  
  • The word "representation" is not usually used in this way in math.  My intention is that it should be recognized as the same kind of object as many other representations.
  • The expression contains the formula $x^3-x$.  This is an encapsulated computation in the symbolic language of math. It allows someone who knows basic algebra and calculus to perform calculations that find the roots, extrema and inflection points of the function $f$.  
  • The word "let" suggests to the fluent reader of mathematical English that (F1) is a definition which is probably going to hold for the next chunk of text, but probably not for the whole article or book.
  • Statements in mathematical English are generally subject to conventions.  In a calculus text (F1) would automatically mean that the function had the real numbers as domain and codomain.
  • The last two remarks show that a beginner has to learn to read mathematical English. 
  • Another convention is discussed in the following diatribe.

Diatribe 

You would expect $f(x)$ by itself to mean the value of $f$ at $x$, but in (F1) the $x$ has the property of a bound variable.  In mathematical English, "let" binds variables. However, after the definition, in the text the "$x$" in the expression "$f(x)$" will be free, but the $f$ will be bound to the specific meaning.  It is reasonable to say that the term "$f(x)$" represents the expression "$x^3-x$" and that $f$ is the (temporary) name of the function. Nevertheless, it is very common to say "the function $f(x)$" to mean $f$.  

A fluent reader of mathematical English knows all this, but probably no one has ever said it explicitly to them.  Mathematical English and the symbolic language should be taught explicitly, including its peculiarities such as "the function $f(x)$".  (You may want to deprecate this usage when you teach it, but students deserve to understand its meaning.)

The positive integers

You have a mental representation of the positive integers $1,2,3,\ldots$.  In this discussion I will assume that "you" know a certain amount of math.  Non-mathematicians may have very different mental representations of the integers.

  • You have a concept of "an integer" in some operational way as an abstract object.
  • "Abstract object" needs a post of its own. Meanwhile see Mathematical Objects (abstractmath) and the Wikipedia articles on Mathematical objects and Abstract objects.
  • You have a connection in your brain between the concept of integer and the concept of listing things in order, numbering them by $1,2,3,\ldots$.
  • You have a connection in your brain between the concept of an integer and the concept of counting a finite number of objects.  But then you need zero!
  • You understand how to represent an integer using the decimal representation, and perhaps representations to other bases as well. 
  • Your mental image has the integer "$42"$ connected to but not the same as the decimal representation "42". This is not true of many students.
  • The decimal rep has a picture of the string "42" associated to it, and of course the picture of the string may come up when you think of the integer $42$ as well (it does for me — it is a an icon for the number $42$.)
  • You have a concept of the set of integers. 
  • Students need to be told that by convention "the set of integers" means the set of all integers.  This particularly applies to students whose native language does not have articles, but American students have trouble with this, too.
  • Your concept of  "the set of integers" may have the icon "$\mathbb{N}$" associated with it.  If you are a mathematician, the icon and the concept of the set of integers are associated with each other but not identified with each other.
  • For me, at least, the concept "set of integers" is mentally connected to each integer by the "element of" relation. (See third bullet below.)
  • You have a mental representation of the fact that the set of integers is infinite.  
  • This does not mean that your brain contains an infinite number of objects, but that you have a representation of infinity as a concept, it is brain-connected to the concept of the set of integers, and also perhaps to a proof of the fact that $\mathbb{N}$ is infinite.
  • In particular, the idea that the set of integers is mentally connected to each integer does not mean that the whole infinite number of integers is attached in your brain to the concept of the set of integers.  Rather, the idea is a predicate in your brain.  When it is connected to "$42$", it says "yes".  To "$\pi$" it says "No".
  • Philosophers worry about the concept of completed infinity.  It exists as a concept in your brain that interacts as a meme with concepts in other mathematicians' brains. In that way, and in that way only (as far as I am concerned) it is a physical object, in particular an object that exists in scattered physical form in a social network.

Graph of a function

This is a graph of the function $y=x^3-x$:

Graph of a cubic function

  • The graph is a physical object, either on a screen or on paper
  • It is processed by your visual system, the most powerful sensory management system in your brain
  • It also represents the graph in the mathematical sense (set of ordered pairs) of the function $y=x^3-x$
  • Both the mathematical graph and the physical graph are represented by modules in your brain, which associates the two of them with each other by a conceptual metaphor
  • The graph shows some properties of the function: inflection point, going off to infinity in a specific way, and so on.
  • These properties are made apparent (if you are knowledgeable) by means of the powerful pattern recognition system in your brain. You see them much more quickly than you can discover them by calculation.
  • These properties are not proved by the graph. Nevertheless, the graph communicates information: for example, it suggests that you can prove that there is an inflection point near $(0,0)$.
  • The graph does not determine or define the function: It is inaccurate and it does not (cannot) show all of the graph.
  • More subtle details about this graph are discussed in my post Representations 2.

Continuity

Example (C1) The $\epsilon-\delta$ definition of the continuity of a function $f:\mathbb{R}\to\mathbb{R}$ may be given in the symbolic language of math:

A function $f$ is continuous at a number $c$ if \[\forall\epsilon(\epsilon\gt0\implies(\forall x(\exists\delta(|x-c|\lt\delta\implies|f(x)-f(c)|\lt\epsilon)))\]

  • To understand (C1), you must be familiar with the notation of first order logic.  For most students, getting the notation right is quite a bit of work.  
  • You must also understand  the concepts, rules and semantics of first order logic.  
  • Even if you are familiar with all that, continuity is still a difficult concept to understand.
  • This statement does show that the concept is logically complicated. I don't see how it gives any other intuition about the concept. 

Example (C2) The definition of continuity can also be represented in mathematical English like this:

A function $f$ is continuous at a number $c$ if for any $\epsilon\gt0$ and for any $x$ there is a $\delta$ such that if $|x-c|\lt\delta$, then $|f(x)-f(c)|\lt\epsilon$. 

  • This definition doesn't give any more intuition that (C1) does.
  • It is easier to read that (C1) for most math students, but it still requires intimate familiarity with the quirks of math English.
  • The fact that "continuous" is in boldface signals that this is a definition.  This is a convention.
  • The phrase "For any $\epsilon\gt0$" contains an unmarked parenthetic insertion that makes it grammatically incoherent.  It could be translated as: "For any $\epsilon$ that is greater than $0$".  Most math majors eventually understand such things subconsciously.  This usage is very common.
  • Unless it is explicitly pointed out, most students won't notice that  if you change the phrase "for any $x$ there is a $\delta$"  to "there is a $\delta$ for any $x$" the result means something quite different.  Cauchy never caught onto this.
  • In both (C1) and (C2), the "if" in the phrase "A function $f$ is continuous at a number $c$ if…" means "if and only if" because it is in a definition.  Students rarely see this pointed out explicitly.  

Example (C3) The definition of continuity can be given in a formally defined first order logical theory

  • The theory would have to contain function symbols and axioms expressing the algebra of real numbers as an ordered field. 
  • I don't know that such a definition has ever been given, but there are various semi-automated and automated theorem-proving systems (which I know little about) that might be able to state such a definition.  I would appreciate information about this.
  • Such a definition would make the property of continuity a mathematical object.
  • An automated theorem-proving system might be able to prove that $x^3-x$ is continuous, but I wonder if the resulting proof would aid your intuition much.

Example (C4) A function from one topological space to another is continuous if the inverse of every open set in the codomain is an open set in the domain.

  • This definition is stated in mathematical English.
  • All definitions start with primitive data. 
  • In definitions (C1) – (C3), the primitive data are real numbers and the statement uses properties of an ordered field.
  • In (C4), the data are real numbers and the arithmetic operations of a topological field, along with the open sets of the field. The ordering is not mentioned.
  • This shows that a definition need not mention some important aspects of the structure. 
  • One marvelous example of this is that  a partition of a set and an equivalence relation on a set are based on essentially disjoint sets of data, but they define exactly the same type of structure.

Example (C4) "The graph of a continuous function can be drawn without picking up the chalk".

  • This is a metaphor that associates an action with the graph.
  • It is incorrect: The graphs of some continuous functions cannot be drawn.  For example, the function $x\mapsto x^2\sin(1/x)$ is continuous on the interval $[-1,1]$ but cannot be drawn at $x=0$. 
  • Generally speaking, if the function can be drawn then it can be drawn without picking up the chalk, so the metaphor provides a useful insight, and it provides an entry into consciousness-raising examples like the one in the preceding bullet.

References

  1. 1.000… and .999… (post)
  2. Conceptual blending (post)
  3. Conceptual blending (Wikipedia)
  4. Conceptual metaphors (Wikipedia)
  5. Convention (abstractmath)
  6. Definitions (abstractmath)
  7. Embodied cognition (Wikipedia)
  8. Handbook of mathematical discourse (see articles on conceptual blendmental representationrepresentationmetaphor, parenthetic assertion)
  9. Images and Metaphors (abstractmath).
  10. The interplay of text, symbols and graphics in math education, Lin Hammill
  11. Math and the modules of the mind (post)
  12. Mathematical discourse: Language, symbolism and visual images, K. L. O’Halloran.
  13. Mathematical objects (abmath)
  14. Mathematical objects (Wikipedia)
  15. Mathematical objects are “out there?” (post)
  16. Metaphors in computing science ​(post)
  17. Procept (Wikipedia)
  18. Representations 2 (post)     
  19. Representations and models (abstractmath)
  20. Representations II: dry bones (post)
  21. Representation theorems (Wikipedia) Concrete representations of abstractly defined objects.
  22. Representation theory (Wikipedia) Linear representations of algebraic structures.
  23. Semiotics, symbols and mathematical visualization, Norma Presmeg, 2006.
  24. The transition to formal thinking in mathematics, David Tall, 2010
  25. Theory in mathematical logic (Wikipedia)
  26. What is the object of the encapsulation of a process? Tall et al., 2000.
  27. Where mathematics comes from, by George Lakoff and Rafael Núñez, Basic Books, 2000. 
  28. Where mathematics comes from (Wikipedia) This is a review of the preceding book.  It is a permanent link to the version of 04:23, 25 October 2012.  The review is opinionated, partly wrong, not well written and does not fit the requirements of a Wikipedia entry.  I recommend it anyway; it is well worth reading.  It contains links to three other reviews.

Notes on Viewing  

This post uses MathJax. If you see mathematical expressions with dollar signs around them, or badly formatted formulas, try refreshing the screen. Sometimes you have to do it two or three times.

Send to Kindle

Conceptual blending

This post uses MathJax.  If you see formulas in unrendered TeX, try refreshing the screen.

A conceptual blend is a structure in your brain that connects two concepts by associating part of one with part of another.  Conceptual blending is a major tool used by our brain to understand the world.

The concept of conceptual blend includes special cases, such as representations, images and conceptual metaphors, that math educators have used for years to understand how mathematics is communicated and how it is learned.  The Wikipedia article is a good starting place for understanding conceptual blending. 

In this post I will illustrate some of the ways conceptual blending is used to understand a function of the sort you meet with in freshman calculus.  I omit the connections with programs, which I will discuss in a separate post.

A particular function

Consider the function $h(t)=4-(t-2)^2$. You may think of this function in many ways.

FORMULA:

$h(t)$ is defined by the formula $4-(t-2)^2$.

  • The formula encapsulates a particular computation of the value of $h$ at a given value $t$.
  • The formula defines the function, which is a stronger statement than saying it represents the function.
  • The formula is in standard algebraic notation. (See Note 1)
  • To use the formula requires one of these:
    • Understand and use the rules of algebra
    • Use a calculator
    • Use an algebraic programming language. 
  • Other formulas could be used, for example $4t-t^2$.
    • That formula encapsulates a different computation of the value of $h$.

TREE: 

$h(t)$ is also defined by this tree (right).
  • The tree makes explicit the computation needed to evaluate the function.
  • The form of the tree is based on a convention, almost universal in computing science, that the last operation performed (the root) is placed at the top and that evaluation is done from bottom to top.
  • Both formula and tree require knowledge of conventions.
  • The blending of formula and tree matches some of the symbols in the formula with nodes in the tree, but the parentheses do not appear in the tree because they are not necessary by the bottom-up convention.
  • Other formulas correspond to other trees.  In other words, conceptually, each tree captures not only everything about the function, but everything about a particular computation of the function.
  • More about trees in these posts:

GRAPH:

$h(t)$ is represented by its graph (right). (See note 2.)

  • This is the graph as visual image, not the graph as a set of ordered pairs.
  • The blending of graph and formula associates each point on the (blue) graph with the value of the formula at the number on the x-axis directly underneath the point.
  • In contrast to the formula, the graph does not define the function because it is a physical picture that is only approximate.
  • But the formula does represent the function.  (This is "represents" in the sense of cognitive psychology, but not in the mathematical sense.)
  • The blending requires familiarity with the conventions concerning graphs of functions. 
  • It sets into operation the vision machinery of your brain, which is remarkably elaborate and powerful.
    • Your visual machinery allows you to see instantly that the maximum of the curve occurs at about $t=2$. 
  • The blending leaves out many things.
    • For one, the graph does not show the whole function.  (That's another reason why the graph does not define the function.)
    • Nor does it make it obvious that the rest of the graph goes off to negative infinity in both directions, whereas that formula does make that obvious (if you understand algebraic notation).  

GEOMETRIC

The graph of $h(t)$ is the parabola with vertex $(2,4)$, directrix $x=2$, and focus $(2,\frac{3}{4})$. 

  • The blending with the graph makes the parabola identical with the graph.
  • This tells you immediately (if you know enough about parabolas!) that the maximum is at $(2,4)$ (because the directrix is vertical).
  • Knowing where the focus and directrix are enables you to mechanically construct a drawing of the parabola using a pins, string, T-square and pencil.  (In the age of computers, do you care?)

HEIGHT:

$h(t)$ gives the height of a certain projectile going straight up and down over time.

  • The blending of height and graph lets you see instantly (using your visual machinery) how high the projectile goes. 
  • The blending of formula and height allows you to determing the projectile's velocity at any point by taking the derivative of the function.
  • A student may easily be confused into thinking that the path of the projectile is a parabola like the graph shown.  Such a student has misunderstood the blending.

KINETIC:

You may understand $h(t)$ kinetically in various ways.

  • You can visualize moving along the graph from left to right, going, reaching the maximum, then starting down.
    • This calls on your experience of going over a hill. 
    • You are feeling this with the help of mirror neurons.
  • As you imagine traversing the graph, you feel it getting less and less steep until it is briefly level at the maximum, then it gets steeper and steeper going down.
    • This gives you a physical understanding of how the derivative represents the slope.
    • You may have seen teachers swooping with their hand up one side and down the other to illustrate this.
  • You can kinetically blend the movement of the projectile (see height above) with the graph of the function.
    • As it goes up (with $t$ increasing) the projectile starts fast but begins to slow down.
    • Then it is briefly stationery at $t=2$ and then starts to go down.
    • You can associate these feelings with riding in an elevator.
      • Yes, the elevator is not a projectile, so this blending is inaccurate in detail.
    • This gives you a kinetic understanding of how the derivative gives the velocity and the second derivative gives the acceleration.

OBJECT:

The function $h(t)$ is a mathematical object.

  • Usually the mental picture of function-as-object consists of thinking of the function as a set of ordered pairs $\Gamma(h):=\{(t,4-(t-2)^2)|t\in\mathbb{R}\}$. 
  • Sometimes you have to specify domain and codomain, but not usually in calculus problems, where conventions tell you they are both the set of real numbers.
  • The blend object and graph identifies each point on the graph with an element of $\Gamma(h)$.
  • When you give a formal proof, you usually revert to a dry-bones mode and think of math objects as inert and timeless, so that the proof does not mention change or causation.
    • The mathematical object $h(t)$ is a particular set of ordered pairs. 
    • It just sits there.
    • When reasoning about something like this, implication statements work like they are supposed to in math: no causation, just picking apart a bunch of dead things. (See Note 3).
    • I did not say that math objects are inert and timeless, I said you think of them that way.  This post is not about Platonism or formalism. What math objects "really are" is irrelevant to understanding understanding math [sic].

DEFINITION

definition of the concept of function provides a way of thinking about the function.

  • One definition is simply to specify a mathematical object corresponding to a function: A set of ordered pairs satisfying the property that no two distinct ordered pairs have the same second coordinate, along with a specification of the codomain if that is necessary.
  • A concept can have many different definitions.
    • A group is usually defined as a set with a binary operation, an inverse operation, and an identity with specific properties.  But it can be defined as a set with a ternary operation, as well.
    • A partition of a set is a set of subsets of a set with certain properties. An equivalence relation is a relation on a set with certain properties.  But a partition is an equivalence relation and an equivalence relation is a partition.  You have just picked different primitives to spell out the definition. 
    • If you are a beginner at doing proofs, you may focus on the particular primitive objects in the definition to the exclusion of other objects and properties that may be more important for your current purposes.
      • For example, the definition of $h(t)$ does not mention continuity, differentiability, parabola, and other such things.
      • The definition of group doesn't mention that it has linear representations.

SPECIFICATION

A function can be given as a specification, such as this:

If $t$ is a real number, then $h(t)$ is a real number, whose value is obtained by subtracting $2$ from $t$, squaring the result, and then subtracting that result from $4$.

  • This tells you everything you need to know to use the function $h$.
  • It does not tell you what it is as a mathematical object: It is only a description of how to use the notation $h(t)$.

Notes

1. Formulas can be give in other notations, in particular Polish and Reverse Polish notation. Some forms of these notations don't need parentheses.

2. There are various ways to give a pictorial image of the function.  The usual way to do this is presenting the graph as shown above.  But you can also show its cograph and its endograph, which are other ways of representing a function pictorially.  They  are particularly useful for finite and discrete functions. You can find lots of detail in these posts and Mathematica notebooks:

3. See How to understand conditionals in the abstractmath article on conditionals.

References

  1. Conceptual blending (Wikipedia)
  2. Conceptual metaphors (Wikipedia)
  3. Definitions (abstractmath)
  4. Embodied cognition (Wikipedia)
  5. Handbook of mathematical discourse (see articles on conceptual blendmental representationrepresentation, and metaphor)
  6. Images and Metaphors (article in abstractmath)
  7. Links to G&G posts on representations
  8. Metaphors in Computing Science (previous post)
  9. Mirror neurons (Wikipedia)
  10. Representations and models (article in abstractmath)
  11. Representations II: dry bones (article in abstractmath)
  12. The transition to formal thinking in mathematics, David Tall, 2010
  13. What is the object of the encapsulation of a process? Tall et al., 2000.

 

Send to Kindle

More about the definition of function

Maya Incaand commented on my post Definition of "function":

Why did you decide against "two inequivalent descriptions in common use"?  Is it no longer true?

This question concerns [1], which is a draft article.  I have not promoted it to the standard article in abstractmath because I am not satisfied with some things in it. 

More specifically, there really are two inequivalent descriptions in common use.  This is stated by the article, buried in the text, but if you read the beginning, you get the impression that there is only one specification.  I waffled, in other words, and I expect to rewrite the beginning to make things clearer.

Below are the two main definitions you see in university courses taken by math majors and grad students.  A functional relation has the property that no two distinct ordered pairs have the same first element.

Strict definition: A function consists of a functional relation with specified codomain (the domain is then defined to be the set of first elements of pairs in the relation).  Thus if $A$ and $B$ are sets and $A\subseteq B$, then the identity function $1_A:A\to A$ and the inclusion function $i:A\to B$  are two different functions.

Relational definition: A function is a functional relation.  Then the identity and inclusion functions are the same function.  This means that a function and its graph are the same thing (discussed in the draft article).

These definitions are subject to variations:

Variations in the strict definition: Some authors use "range" for "codomain" in the definition, and some don't make it clear that two functions with the same functional relation but different codomains are different functions.

Variations in the relational definition: Most such definitions state explicitly that the domain and range are determined by the relation (the set of first coordinates and the set of second coordinates). 

Formalism

There are many other variations in the formalism used in the definition.  For example, the strict definition can be formalized (as in Wikipedia) as an ordered triple $(A, B, f)$ where $A$ and $B$ are sets and $f$ is a functional relation with the property thar every element of $A$ is the first element of an ordered pair in the relation.  

You could of course talk about an ordered triple $(A,f,B)$ blah blah.  Such definitions introduce arbitrary constructions that have properties irrelevant to the concept of function.  Would you ever say that the second element of the function $f(x)=x+1$ on the reals is the set of real numbers?  (Of course, if you used the formalism $(A,f,B)$ you would have to say the second element of the function is its graph! )

It is that kind of thing that led me to use a specification instead of a definition.  If you pay attention to such irrelevant formalism there seems to be many definitions of function.  In fact, at the university level there are only two, the strict definition and the relational definition.  The usage varies by discipline and age.  Younger mathematicians are more likely to use the strict definition.  Topologists use the strict definition more often than analysts (I think).

Usage

There is also variation in usage.

  • Most authors don't tell you which definition they use, and it often doesn't matter anyway. 
  • If an author defines a function using a formula, there is commonly an implicit assumption that the domain includes everything for which the formula is well-defined.  (The "everything" may be modified by referring to it as an integer, real, or complex function.)

Definitions of function on the web

Below are some definitions of function that appear on the web.  I have excluded most definitions aimed at calculus students or below; they often assume you are talking about numbers and formulas.  I have not surveyed textbooks and research papers.  That would have to be done for a proper scholarly article about mathematical usage of "function". But most younger people get their knowledge from the web anyway.

  1. Abstractmath draft article: Functions: Specification and Definition.  (Note:  Right now you can't get to this from the Table of Contents; you have to click the preceding link.) 
  2. Gyre&Gimble post: Definition of "function"
  3. Intmath discussion of function  Function as functional relation between numbers, with induced domain and range.
  4. Mathworld definition of function Functional-relation definition.  Defines $F:A\to B$ in a way that requires $B$ to be the image.
  5. Planet Math definition of function Strict definition.
  6. Prime Encyclopedia of Mathematics Functional-relation definition.
  7. Springer Encyclopedia of Math definition of function  Strict definition, except not clear if different codomains mean different functions.
  8. Wikipedia definition of function Discusses both definitions.
  9. Wisconsin Department of Public Instruction Definition of function  Function as functional relation.
Send to Kindle

Abstract objects

Some thoughts toward revising my article on mathematical objects.  

Mathematical objects are a kind of abstract object.  There are lots of abstract objects that are not mathematical objects,  For example, if you keep a calendar or schedule for appointments, that calendar is an abstract object.  (This example comes from [2]). 

It may be represented as a physical object or you may keep it entirely in your head.  I am not going to talk about the latter possibility, because I don't know what to say.

  1. If it is a paper calendar, that physical object represents the information that is contained in your calendar.  
  2. Same for a calendar on a computer, but that is stored as magnetic bits on a disk or in flash memory. A computer program (part of the operating system) is required to present it on the screen in such a way that you can read it.  Each time you open it, you get a new physical representation of the calendar.

Your brain contains a module (see [5], [7]) that interprets the representation in (1) or (2) and which has connections with other modules in your brain for dates, times, locations and whether the appointment is for a committee, a medical exam, or whatever.  

The calendar-interpreter module in your brain is necessary for the physical object to be a calendar.  The physical object is not in itself your calendar.  The calendar in this sense does not exist in the physical world.  It is abstract.  Since we think of it as a thing, it is an abstract object.

The abstract object "my calendar" affects the physical world (it causes you to go to the dentist next Tuesday).  The relation of the abstract object to the physical world is mediated by whatever physical object you call your calendar along with the modules in the brain that relate to it.  The modules in the brain are actions by physical objects, so this point of view does not involve Cartesian style dualism.

Note:  A module is a meme.  Are all memes modules?  This needs to be investigated.  Whatever they are, they exist as physical objects in people's brains.

Mathematical objects

A rigorous proof of a theorem about a mathematical object tends to refer to the object as if it were absolutely static and did not affect anything in the physical world.  I talked about this in [10], where I called it the dry bones representation of a mathematical object.  Mathematical objects don't have to be thought of this way, but (I suggest) what makes them mathematical objects is that they can be thought of in dry bones mode.  

If you use calculus to figure out how much fuel to use in a rocket to make it go a mile high, then actually use that amount in the rocket and send it off, your calculations have affected your physical actions, so you were thinking of the calculations as an abstract object.  But if you sit down to check your calculations, you concentrate on the steps one by one with the rules of algebra and calculus in mind.  You are looking at them as inert objects, like you would look at a bone of a dinosaur to see what species it belongs to. From that point of view your calculations form a mathematical object, because you are using the dry-bones approach.

Caveat

All this blather is about how you should think about mathematical objects.  It can be read as philosophy, but I have no intention of defending it as philosophy.  People learning abstract math at college level have a lot of trouble thinking about mathematical objects as objects, and my intention is to start clarifying some aspects of how you think about them in different circumstances.  (The operative word is "start" — there is a lot more to be said.)

About the exposition of this post (a commercial)

You will notice that I gave examples of abstract objects but did not define the word "abstract object".  I did the same with mathematical objects.  In both cases, I put the word "abstract object" or "mathematical object" in boldface at a suitable place in the exposition.

That is not the way it is done in math, where you usually make the definition of a word in a formal way, marking it as Definition, putting the word in bold or italics, and listing the attributes it must have.  I want to point out two things:

  • For the most part, that behavior is peculiar to mathematics.
  • This post is not a presentation of mathematical ideas.  

This gives me an opportunity for a commercial:  Read what we have written about definitions in References [1], [3] and [4].

References

  1. Atish Bagchi and Charles Wells, Varieties of Mathematical Prose, 1998.
  2. Reuben Hersh, What is mathematics, really? Oxford University Press, 1997
  3. Charles Wells, Handbook of Mathematical Discourse.
  4. Charles Wells, Mathematical objects in abstractmath.org
  5. Math and modules of the mind (previous post)
  6. Mathematical Concepts (previous post)
  7. Thinking about abstract math (previous post)
  8. Terrence W. Deacon, Incomplete Nature.  W. W. Norton, 2012. [I have read only a little of this book so far, but I think he is talking about abstract objects in the sense I have described above.]
  9. Gideon Rosen, Abstract Objects.  Stanford Encyclopedia of Philosophy.
  10. Representations II: Dry Bones (previous post)

 

http://plato.stanford.edu/entries/abstract-objects/

Send to Kindle

Defining “category”

The concept of category is typically taught later in undergrad math than the concept of group is.  It is supposedly a more advanced concept.  Indeed, the typical examples of categories used in applications are more advanced than some of those in group theory (for example, symmetries of geometric shapes and operations on numbers).

Here are some thoughts on how categories could be taught as early as groups, if not earlier.

Nodes and arrows

Small finite categories can be pictured as a graph using nodes and arrows, together with a specification of the identity arrows and a definition of the composition.  (I am using the word “graph” the way category people use it:  a directed graph with possible multiple edges and loops.)

An example is the category pictured below with three objects and seven arrows. The composition is forced except for $kh$, which I hereby define to be $f$.

This way of picturing a category is  easy to grasp. The composite $kh$ visibly has to be either $f$ or $g$.  There is only one choice for the composite of any other composable pair.  Still, the choice of composite is not deducible directly by looking at the graph.

A first class in category theory using graphs as examples could start with this example, or the example in Note 1 below.  This example is nontrivial (never start any subject with trivial examples!) and easy to grasp, in this case using the extraordinary preprocessing your brain does with the input from your eyes.  The definition of category is complicated enough that you should probably present the graph and then give the definition while pointing to what each clause says about the graph.

Most abstract structures have several different ways of representing them. In contrast, when you discuss categorial concepts the standard object-and-arrow notation is the overwhelming favorite.  It reveals domains and codomains and composable pairs, in fact almost everything except which of several possible arrows the composite actually is.  If for example you try to define category using sets and functions as your running example, the student has to do a lot of on-the-go chunking — thinking of a set as a single object, of a set function (which may involve lots of complicated data) as a single chunk with a domain and a codomain, and so on.  But an example shown as a graph comes already chunked and in a picture that is guaranteed to be the most common kind of display they will see in discussions of categories.

After you do these examples, you can introduce trivial and simple graph examples in which the composition is entirely induced; for example these three:

(In case you are wondering, one of them is the empty category.)  I expect that you should also introduce another graph non-example in which associativity fails.

Multiplication tables

The multiplication table for a group is easy to understand, too, in the sense that it gives you a simple method of calculating the product of any two elements.  But it doesn’t provide a visual way to see the product as a category-as-graph does.  Of course, the graph representation works only for finite categories, just as the multiplication table works only for finite groups.

You can give a multiplication table for a small finite category, too, like the one below for the category above.  (“iA” means the identity arrow on A and composition, as usual in category theory, is right to left.) This is certainly more abstract than the graph picture, but it does hit you in the face with the fact that the multiplication is partial.

Notes

1. My suggested example of a category given as a graph shows clearly that you can define two different categorial structures on the graph.  One problem is that the two different structures are isomorphic categories.  In fact, if you engage the students in a discussion about these examples someone may notice that!  So you should probably also use the graph below,where you can define several different category structures that are not all isomorphic. 

2. Multiplication tables and categories-as-graphs-with-composition are extensional presentations.  This means they are presented with all their parts laid out in front of you.  Most groups and categories are given by definitions as accumulations of properties (see concept in the Handbook of Mathematical Discourse).  These definitions tend to make some requirements such as associativity obvious.

Students are sometimes bothered by extensional definitions.  “What are h and k (in the category above)?  What are a, b and c?” (in a group given as a set of letters and a multiplication table).

Send to Kindle

Definition of “function”

I have made a major revision of the abstractmath.org article Functions: Specification and Definition.   The links from the revised article lead into the main abstractmath website, but links from other articles on the website still go back to the old version. So if you click on a link in the revised version, make it come up in a new window.

I expect to link the revision in after I make a few small changes, and I will take into account any comments from you all.

Remarks

1.  You will notice that the new version is in PDF instead of HTML.  A couple of other articles on the website are already in PDF, but I don’t expect to continue replacing HTML by PDF.   It is too much work.  Besides, you can’t shrink it to fit tablets.

2. It would also have been a lot of work to adapt the revision so that I could display it directly on Word Press.  In some cases I have written revisions first in WP and then posted them on the abmath website.  That is not so difficult and I expect to do it again.

Send to Kindle

Liberal-artsy people

I graduated from Oberlin College with a B.A. as a math major and minors in philosophy and English literature, with only three semesters of science courses.  I was and am "liberal-artsy".   As professor of math at Case Western Reserve University,  I had lots of colleagues in both pure and applied math who started out with B.Sc. degrees. We did not always understand each other very well!

Caveat: "Liberal-artsy" and "Narrowly Focused B.Sc. type" (I need a better name) are characteristics that people may have in varying amounts, and many professors in science and math have both characteristics.   I do, myself, although I am more L.A. that B.Sc.  Furthermore, I know nothing about any sociological or cognitive-science research on these characteristics.  I am making it all up as I write.  (This is a blog post, not a tome.)

I recently posted on secants and  tangents.  These articles were deliberately aimed to tickle the interests of L.A.  students.

Liberal-artsy types want to know about connections between concepts.  In each post, I wrote on both common meanings of the words (secant line and function, tangent line and function) and the close connections between them.  Some trig teachers / trig texts tell students about these connections but too many don't.   On the other hand, many B.Sc. types are left cold by such discussions.  B.Sc. types are goal-oriented and want to know a) how do I use it? b) how do I calculate it?  They get impatient when you talk about anything else.  I say point out these connections anyway.

L.A. types want to know about the reason for the name of a concept.  The post on secants refers to the metaphor that "secant" means "cutting". This is based on the etymology of "secant", which is hidden to many students  because it is based on Latin.  The post makes the connection that the "original" definition of "secant" was the length of a certain line segment generated by an angle in the unit circle. The post on tangents makes an analogous connection, and also points out that most tangent lines that students see touch the curve at only a single point, which is not a connotation of the English word "touch".

Many people think they have learned something when they know the etymology of a word.  In fact, the etymology of a word may have little or nothing to do with its current meaning, which may have developed over many centuries of metaphors that become dead, generate new metaphors that become dead, umpteen times, so that the original meaning is lost.  (The word "testimony" cam from a Latin phrase meaning hold your testicles, which is really not related to its meaning in present-day English.)

So I am not convinced that etymologies of names can help much in most cases.  In particular, different mathematical definitions of the same concept can be practically disjoint in terms of the data they use, and there is no one "correct" definition, although there may be only one that motivates the name.  (There often isn't a definition that motivates the name.  Think "group".)  But I do know that when I mention the history of a name of a concept in class, some students are fascinated and ask me questions about it.

L.A. types are often fascinated by ETBell-like stories about the mathematician who came up with a concept, and sometimes the stories illuminate the mathematical idea.  But L. A. types often are interested anyway.  It's funny when you talk about such a thing in class, because some students visibly tune out while others noticeably perk up and start paying attention.

So who should you cater to?  Answer:  Both kinds of students.  (Tell interesting stories, but quickly and in an offhand way.)

The posts on secants and tangents also experimented with using manipulable diagrams to illustrate the ideas.  I expect to write about that more in another post.

For more about the role of definitions, check out the abmath article and also Timothy Gowers' post on definitions (one of a series of excellent posts on working with abstract math).


Send to Kindle