Tag Archives: abstraction

Technical meanings clash with everyday meanings

Recently (see note [a]) on MathOverflow, Colin Tan asked [1] “What does ‘kernel’ mean in ‘integral kernel’?”  He had noticed the different use of the word in referring to the kernels of morphisms.

I have long thought [2] that the clash between technical meanings and everyday meaning of technical terms (not just in math) causes trouble for learners.  I have recently returned to teaching (discrete math) and my feeling is reinforced — some students early in studying abstract math cannot rid themselves of thinking of a concept in terms of familiar meanings of the word.

One of the worst areas is logic, where “implies” causes well-known bafflement.   “How can ‘If P then Q’ be true if P is false??”  For a large minority of beginning college math students, it is useless to say, “Because the truth table says so!”.  I may write in large purple letters (see [3] for example) on the board and in class notes that The Definition of a Technical Math Concept Determines Everything That Is True About the Concept but it does not take.  Not nearly.

The problem seems to be worse in logic, which changes the meaning of words used in communicating math reasoning as well as those naming math concepts. But it is bad enough elsewhere in math.

Colin’s question about “kernel” is motivated by these feelings, although in this case it is the clash of two different technical meanings given to the same English word — he wondered what the original idea was that resulted in the two meanings.  (This is discussed by those who answered his question.)

Well, when I was a grad student I made a more fundamental mistake when I was faced with two meanings of the word “domain” (in fact there are at least four meanings in math).  I tried to prove that the domain of a continuous function had to be a connected open set.  It didn’t take me all that long to realize that calculus books talked about functions defined on closed intervals, so then I thought maybe it was the interior of the domain that was a, uh, domain, but I pretty soon decided the two meanings had no relation to each other.   If I am not mistaken Colin never thought the two meanings of “kernel” had a common mathematical definition.

It is not wrong to ask about the metaphor behind the use of a particular common word for a technical concept.  It is quite illuminating to get an expert in a subject to tell about metaphors and images they have about something.  Younger mathematicians know this.  Many of the questions on MathOverflow are asking just for that.  My recollection of the Bad Old Days of Abstraction and Only Abstraction (1940-1990?) is that such questions were then strongly discouraged.

Notes

[a] The recent stock market crash has been blamed [4] on the fact that computers make buy and sell decisions so rapidly that their actions cannot be communicated around the world fast enough because of the finiteness of the speed of light.  This has affected academic exposition, too.  At the time of writing, “recently” means yesterday.

References

[1] Colin Tan, “What does ‘kernel’ mean in ‘integral kernel’?

[2] Commonword names for technical concepts (previous blog).

[3] Definitions. (Abstractmath).

[4] John Baez, This weeks finds in mathematical physics, Week 297.

Send to Kindle

Templates in mathematical practice

This post is a first pass at what will eventually be a section of abstractmath.org. It’s time to get back to abstractmath; I have been neglecting it for a couple of years.

What I say here is based mainly on my many years of teaching discrete mathematics at Case Western Reserve University in Cleveland and more recently at Metro State University in Saint Paul.

Beginning abstract math

College students typically get into abstract math at the beginning in such courses as linear algebra, discrete math and abstract algebra. Certain problems that come up in those early courses can be grouped together under the notion of (what I call) applying templates [note 0]. These are not the problems people usually think about concerning beginners in abstract math, of which the following is an incomplete list:

The students’ problems discussed here concern understanding what a template is and how to apply it.

Templates can be formulas, rules of inference, or mini-programs. I’ll talk about three examples here.

The template for quadratic equations

The solution of a real quadratic equation of the form {ax^2+bx+c=0} is given by the formula

\displaystyle  x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}

This is a template for finding the roots of the equations. It has subtleties.

For example, the numerator is symmetric in {a} and {c} but the denominator isn’t. So sometimes I try to trick my students (warning them ahead of time that that’s what I’m trying to do) by asking for a formula for the solution of the equation {a+bx+cx^2=0}. The answer is

\displaystyle x=\frac{-b\pm\sqrt{b^2-4ac}}{2c}

I start writing it on the board, asking them to tell me what comes next. When we get to the denominator, often someone says “{2a}”.

The template is telling you that the denominator is 2 times the coefficient of the square term. It is not telling you it is “{a}”. Using a template (in the sense I mean here) requires pattern matching, but in this particular example, the quadratic template has a shallow incorrect matching and a deeper correct matching. In detail, the shallow matching says “match the letters” and the deep matching says “match the position of the letters”.

Most of the time the quadratic being matched has particular numbers instead of the same letters that the template has, so the trap I just described seldom occurs. But this makes me want to try a variation of the trick: Find the solution of {3+5x+2x^2=0}. Would some students match the textual position (getting {a=3}) instead of the functional position (getting {a=5})? [Note [0]). If they did they would get the solutions {(-1,-\frac{2}{3})} instead of {(-1,-\frac{3}{2})}.

Substituting in algebraic expressions have other traps, too. What sorts of mistakes would students have solving {3x^2+b^2x-5=0}?

Most students on the verge of abstract math don’t make mistakes with the quadratic formula that I have described. The thing about abstract math is that it uses more sophisticated templates

  • subject to conditions
  • with variations
  • with extra levels of abstraction

The template for proof by induction

This template gives a method of proof of a statement of the form {\forall{n}\mathcal{P}(n)}, where {\mathcal{P}} is a predicate (presumably containing {n} as a variable) and {n} varies over positive integers. The template says:

Goal: Prove {\forall{n}\mathcal{P}(n)}.

Method:

  • Prove {\mathcal{P}(1)}
  • For an arbitrary integer {n>1}, assume {\mathcal{P}(n)} and deduce {\mathcal{P}(n+1)}.

For example, to prove {\forall n (2^n+1\geq n^2)} using the template, you have to prove that {2^2+1\geq  1^1}, and that for any {n>1}, if {2^n+1\geq n^2}, then {2^{n+1}+1\geq  (n+1)^2}. You come up with the need to prove these statements by substituting into the template. This template has several problems that the quadratic formula does not have.

Variables of different types

The variable {n} is of type integer and the variable {\mathcal{P}} is of type predicate [note 0]. Having to deal with several types of variables comes up already in multivariable calculus (vectors vs. numbers, cross product vs. numerical product, etc) and they multiply like rabbits in beginning abstract math classes. Students sometimes write things like “Let {\mathcal{P}=n+1}”. Multiple types is a big problem that math ed people don’t seem to discuss much (correct me if I am wrong).

Free and bound

The variable {n} occurs as a bound variable in the Goal and a free variable in the Method. This happens in this case because the induction step in the Method originates as the requirement to prove {\forall  n(\mathcal{P}(n)\rightarrow\mathcal{P}(n+1))}, but as I have presented it (which seems to be customary) I have translated this into a requirement based on modus ponens. This causes students problems, if they notice it. (“You are assuming what you want to prove!”) Many of them apparently go ahead and produce competent proofs without noticing the dual role of {n}. I say more power to them. I think.

The template has variations

  • You can start the induction at other places.
  • You may have to have two starting points and a double induction hypothesis (for {n-1} and {n}). In fact, you will have to have two starting points, because it seems to be a Fundamental Law of Discrete Math Teaching that you have to talk about the Fibonacci function ad nauseam.
  • Then there is strong induction.

It’s like you can go to the store and buy one template for quadratic equations, but you have to by a package of templates for induction, like highway engineers used to buy packages of plastic French curves to draw highway curves without discontinuous curvature.

The template for row reduction

I am running out of time and won’t go into as much detail on this one. Row reduction is an algorithm. If you write it up as a proper computer program there have to be all sorts of if-thens depending on what you are doing it for. For example if want solutions to the simultaneous equations

2x+4y+z = 1
x+2y = 0
x+2y+4z = 5

you must row reduce the matrix

2 4 1 1
1 2 0 0
1 2 4 5

(I haven’t yet figured out how to wrap this in parentheses) which gives you

1 2 0 0
0 0 1 0
0 0 0 1

This introduces another problem with templates: They come with conditions. In this case the condition is “a row of three 0s followed by a nonzero number means the equations have no solutions”. (There is another condition when there is a row of all 0’s.)

It is very easy for the new student to get the calculation right but to never sit back and see what they have — which conditions apply or whatever.

When you do math you have to repeatedly lean in and focus on the details and then lean back and see the Big Picture. This is something that has to be learned.

What to do, what to do

I have recently experimented with being explicit about templates, in particular going through examples of the use of a template after explicitly stating the template. It is too early to say how successful this is. But I want to point out that even though it might not help to be explicit with students about templates, the analysis in this post of a phenomenon that occurs in beginning abstract math courses

  • may still be accurate (or not), and
  • may help teachers teach such things if they are aware of the phenomenon, even if the students are not.

Notes

  1. Many years ago, I heard someone use the word “template” in the way I am using it now, but I don’t recollect who it was. Applied mathematicians sometimes use it with a meaning similar to mine to refer to soft algorithms–recipes for computation that are not formal algorithms but close enough to be easily translated into a sufficiently high level computer language.
  2. In the formula {ax^2+bx+c}, the “{a}” has the first textual position but the functional position as the coefficient of the quadratic term. This name “functional position” has nothing to do with functions. Can someone suggest a different name that won’t confuse people?
  3. I am using “variable” the way logicians do. Mathematicians would not normally refer to “{\mathcal{P}}” as a variable.
  4. I didn’t say anything about how templates can involve extra layers of abstract.  That will have to wait.
Send to Kindle