Category Archives: exposition

The great math mystery

The great math mystery

Last night Nova aired The great math mystery, a documentary that describes mathematicians’ ideas about whether math is discovered or invented, whether it is “out there” or “in our head”. It was well-done. Things were explained clearly using images and metaphors, although they did show Maxwell’s equations as algebra (without explaining it). The visual illustrations of connections between Maxwell’s equations and music and electromagnetic waves was one of the best parts of the documentary.

In my opinion they made good choices of mathematical ideas to cover, but I imagine a lot of research mathematicians will have a hissy that they didn’t cover XXX (their subject).

The applications to physics dominated the show (that is not a complaint), but someone did mention the remarkable depth of number theory. Number theory is deep pure math that has indeed had some applications, but that’s not why some of the greatest mathematicians in the world have spent their lives on the subject. I believe logic and proof was never mentioned, and that is completely appropriate for a video made for the general public. Some mathematicians will disagree with that last sentence.

Where does math live?

The question,

Does math live

  • In an ideal world separate from the physical world,
  • in the physical world, or
  • in our brains?

has a perfectly clear answer: It exists in our brains.

Ideal world

The notion that math lives in an ideal world, as Plato supposedly believed, has no evidence for it at all.

I suppose you could say that Plato’s ideal world does exist — in our brains. But that wouldn’t be quite correct: We have a mental image of Plato’s ideal world in our brains, but that image is not the whole ideal world: If we know about triangles, we can imagine the Ideal Triangle to be in his world, but we have to know about the zeta function or the monster group to visualize them to be in his world. Even then, the monster group in our brain is just a collection of neurons connected to concepts such as “largest sporadic simple group” or “contains\[2^{46} \cdot 3^{20} \cdot 5^9 \cdot 7^6 \cdot 11^2 \cdot 13^3 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71\]elements” — but there is not a neuron for each element! We don’t have that many neurons.

The size of the monster group does not live in my brain. I copied it from Wikipedia.

Real world

Our collective experience is that math is extraordinarily useful for modeling many aspects of the real world. But in what sense does that mean it exists in the real world?

There is a sense in which a model of the real world exists in our brains. If we know some of the math that explains certain aspects of the real world, our brains have neuron connections that make that math live in our brain and in some sense in the model of the real world that is in our brain. But does that mean the math is “out there”? I don’t see why.

Math is a social endeavor

One point that usually gets left out of discussions of Platonism is this: Some math exists in any individual person’s brain. But math also exists in society. The math floating around in the individual brains of people is subject to frequent amendments to those people’s understanding because they interact with the real world and in particular with other people.

In particular, theoretical math exists in the society of mathematicians. It is constantly fluctuating because mathematicians talk to each other. They also explain it to non-mathematicians, which as everyone know can bring new insights into the brain of the person doing the explaining.

So I think that the best answer to the question, where does math live? is that math is a bunch of memes that live in our social brain.

References

I have written about these issues before:

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 2.5 License.

Send to Kindle

Problems caused for students by the two languages of math

The two languages of math

Mathematics is communicated using two languages: Mathematical English and the symbolic language of math (more about them in two languages).

This post is a collection of examples of the sorts of trouble that the two languages cause beginning abstract math students. I have gathered many of them here since they are scattered throughout the literature. I would welcome suggestions for other references to problems caused by the languages of math.

In many of the examples, I give links to the literature and leave you to fish out the details there. Almost all of the links are to documents on the internet.

There is an extensive list of references.

Conjectures

Scattered through this post are conjectures. Like most of my writing about difficulties students have with math language, these conjectures are based on personal observation over 37 years of teaching mostly computer engineering and math majors. The only hard research of any sort I have done in math ed consists of the 426 citations of written mathematical writing included in the Handbook of Mathematical Discourse.

Disclaimer

This post is an attempt to gather together the ways in which math language causes trouble for students. It is even more preliminary and rough than most of my other posts.

  • The arrangement of the topics is unsatisfactory. Indeed, the topics are so interrelated that it is probably impossible to give a satisfactory linear order to them. That is where writing on line helps: Lots of forward and backward references.
  • Other people and I have written extensively about some of the topics, and they have lots of links. Other topics are stubs and need to be filled out. I have probably missed important points about and references to many of them.
  • Please note that many of the most important difficulties that students have with understanding mathematical ideas are not caused by the languages of math and are not represented here.

I expect to revise this article periodically as I find more references and examples and understand some of the topics better. Suggestions would be very welcome.

Intricate symbolic expressions

I have occasionally had students tell me that have great difficulty understanding a complicated symbolic expression. They can’t just look at it and learn something about what it means.

Example

Consider the symbolic expression \[\displaystyle\left(\frac{x^3-10}{3 e^{-x}+1}\right)^6\]

Now, I could read this expression aloud as if it were text, or more precisely describe it so that someone else could write it down. But if I am in math mode and see this expression I don’t “read” it, even to myself.

I am one of those people who much of the time think in pictures or abstractions without words. (See references here.)

In this case I would look at the expression as a structured picture. I could determine a number of things about it, and when I was explaining it I would point at the board, not try to pronounce it or part of it:

  • The denominator is always positive so the expression is defined for all reals.
  • The exponent is even so the value of the expression is always nonnegative. I would say, “This (pointing at the exponent) is an even power so the expression is never negative.”
  • It is zero in exactly one place, namely $x=\sqrt[3]{10}$.
  • Its derivative is also $0$ at $\sqrt[3]{10}$. You can see this without calculating the formula for the derivative (ugh).

There is much more about this example in Zooming and Chunking.

Algebra in high school

There are many high school students stymied by algebra, never do well at it, and hate math as a result. I have known many such people over the years. A revealing remark that I have heard many times is that “algebra is totally meaningless to me”. This is sometimes accompanied by a remark that geometry is “obvious” or something similar. This may be because they think they have to “read” an algebraic expression instead of studying it as they would a graph or a diagram.

Conjecture

Many beginning abstractmath students have difficulty understanding a symbolic expression like the one above. Could this be cause by resistance to treating the expression as a structure to be studied?

Context-sensitive pronunciation

A symbolic assertion (“formula” to logicians) can be embedded in a math English sentence in different ways, requiring the symbolic assertion to be pronounced in different ways. The assertion itself is not modified in any way in these different situations.

I used the phrase “symbolic assertion” in abstractmath.org because students are confused by the logicians’ use of “formula“.
In everyday English, “$\text{H}_2\text{O}$” is the “formula” for water, but it is a term, not an assertion.

Example

“For every real number $x\gt0$ there is a real number $y$ such that $x\gt y\gt0$.”

  • In the sentence above, the assertion “$x\gt0$” must be pronounced “$x$ that is greater than $0$” or something similar.
  • The standalone assertion “$x\gt0$” is pronounced “$x$ is greater than $0$.”
  • The sentence “Let $x\gt0$” must be pronounced “Let $x$ be greater than $0$”.

The consequence is that the symbolic assertion, in this case “$x\gt0$”, does not reveal that role it plays in the math English sentence that it is embedded in.

Many of the examples occurring later in the post are also examples of context-sensitive pronunciation.

Conjectures

Many students are subconsciously bothered by the way the same symbolic expression is pronounced differently in different math English sentences.

This probably impedes some students’ progress. Teachers should point this phenomenon out with examples.

Students should be discouraged from pronouncing mathematical expressions.

For one thing, this could get you into trouble. Consider pronouncing “$\sqrt{3+5}+6$”. In any case, when you are reading any text you don’t pronounce the words, you just take in their meaning. Why not take in the meaning of algebraic expressions in the same way?

Parenthetic assertions

A parenthetic assertion is a symbolic assertion embedded in a sentence in math English in such a way that is a subordinate clause.

Example

In the math English sentence

“For every real number $x\gt0$ there is a real number $y$ such that $x\gt y\gt0$”

mentioned above, the symbolic assertion “$x\gt0$” plays the role of a subordinate clause.

It is not merely that the pronunciation is different compared to that of the independent statement “$x\gt0$”. The math English sentence is hard to parse. The obvious (to an experienced mathematician) meaning is that the beginning of the sentence can be read this way: “For every real number $x$, which is bigger than $0$…”.

But new student might try to read it is “For every real number $x$ is greater than $0$ …” by literally substituting the standalone meaning of “$x\gt0$” where it occurs in the sentence. This makes the text what linguists call a garden path sentence. The student has to stop and start over to try to make sense of it, and the symbolic expression lacks the natural language hints that help understand how it should be read.

Note that the other two symbolic expressions in the sentence are not parenthetic assertions. The phrase “real number” needs to be followed by a term, and it is, and the phrase “such that” must be followed by a clause, and it is.

More examples

  • “Consider the circle $S^1\subseteq\mathbb{C}=\mathbb{R}^2$.” This has subordinate clauses to depth 2.
  • “The infinite series $\displaystyle\sum_{k=1}^\infty\frac{1}{k^2}$ converges to $\displaystyle\zeta(2)=\frac{\pi^2}{6}\approx1.65$”
  • “We define a null set in $I:=[a,b]$ to be a set that can be covered by a countable of intervals with arbitrarily small total length.” This shows a parenthetical definition.
  • “Let $F:A\to B$ be a function.”
    A type declaration is a function? In any case, it would be better to write this sentence simply as “Let $F:A\to B$”.

David Butler’s post Contrapositive grammar has other good examples.

Math texts are in general badly written. Students need to be taught how to read badly written math as well as how to write math clearly. Those that succeed (in my observation) in being able to read math texts often solve the problem by glancing at what is written and then reconstructing what the author is supposedly saying.

Conjectures

Some students are baffled, or at least bothered consciously or unconsciously, by parenthetic assertions, because the clues that would exist in a purely English statement are missing.

Nevertheless, many if not most math students read parenthetic assertions correctly the first time and never even notice how peculiar they are.

What makes the difference between them and the students who are stymied by parenthetic assertions?

There is another conjecture concerning parenthetic assertions below.

Context-sensitive meaning

“If” in definitions

Example

The word “if” in definitions does not mean the same thing that it means in other math statements.

  • In the definition “An integer is even if it is divisible by $2$,” “if” means “if and only if”. In particular, the definition implies that a function is not even if it is not divisible by $2$.
  • In a theorem, for example “If a function is differentiable, then it is continuous”, the word “if” has the usual one-way meaning. In particular, in this case, a continuous function might not be differentiable.

Context-sensitive meaning occurs in ordinary English as well. Think of a strike in baseball.

Conjectures

The nearly universal custom of using “if” to mean “if and only if” in definitions makes it a harder for students to understand implication.

This custom is not the major problem in understanding the role of definitions. See my article Definitions.

Underlying sets

Example

In a course in group theory, a lecturer may say at one point, “Let $F:G\to H$ be a homomorphism”, and at another point, “Let $g\in G$”.

In the first sentence, $G$ refers to the group, and in the second sentence it refers to the underlying set of the group.

This usage is almost universal. I think the difficulty it causes is subtle. When you refer to $\mathbb{R}$, for example, you (usually) are referring to the set of real numbers together with all its canonical structure. The way students think of it, a real number comes with its many relations and connections with the other real numbers, ordering, field properties, topology, and so on.

But in a group theory class, you may define the Klein $4$-group to be $\mathbb{Z}_2\times\mathbb{Z}_2$. Later you may say “the symmetry group of a rectangle that is not a square is the Klein $4$-group.” Almost invariably some student will balk at this.

Referring to a group by naming its underlying set is also an example of synecdoche.

Conjecture

Students expect every important set in math to have a canonical structure. When they get into a course that is a bit more abstract, suddenly the same set can have different structures, and math objects with different underlying sets can have the same structure. This catastrophic shift in a way of thinking should be described explicitly with examples.

Way back when, it got mighty upsetting when the earth started going around the sun instead of vice versa. Remind your students that these upheavals happen in the math world too.

Overloaded notation

Identity elements

A particular text may refer to the identity element of any group as $e$.

This is as far as I know not a problem for students. I think I know why: There is a generic identity element. The identity element in any group is an instantiation of that generic identity element. The generic identity element exists in the sketch for groups; every group is a functor defined on that sketch. (Or if you insist, the generic identity element exists in the first order theory for groups.) I suspect mathematicians subconsciously think of identity elements in this way.

Matrix multiplication

Matrix multiplication is not commutative. A student may forget this and write $(A^2B^2=(AB)^2$. This also happens in group theory courses.

This problem occurs because the symbolic language uses the same symbol for many different operations, in this case the juxtaposition notation for multiplication. This phenomenon is called overloaded notation and is discussed in abstractmath.org here.

Conjecture

Noncommutative binary operations written using juxtaposition cause students trouble because going to noncommutative operations requires abandoning some overlearned reflexes in doing algebra.

Identity elements seem to behave the same in any binary operation, so there are no reflexes to unlearn. There are generic binary operations of various types as well. That’s why mathematicians are comfortable overloading juxtaposition. But to get to be a mathematician you have to unlearn some reflexes.

Negation

Sometimes you need to reword a math statement that contains symbolic expressions. This particularly causes trouble in connection with negation.

Ordinary English

The English language is notorious among language learners for making it complicated to negate a sentence. The negation of “I saw that movie” is “I did not see that movie”. (You have to put “d** not” (using the appropriate form of “do”) before the verb and then modify the verb appropriately.) You can’t just say “I not saw that movie” (as in Spanish) or “I saw not that movie” (as in German).

Conjecture

The method in English used to negate a sentence may cause problems with math students whose native language is not English. (But does it cause math problems with those students?)

Negating symbolic expressions

Examples

  • The negation of “$n$ is even and a prime” is “$n$ is either odd or it is not a prime”. The negation should not be written “$n$ is not even and a prime” because that sentence is ambiguous. In the heat of doing a proof students may sometimes think the negation is “$n$ is odd and $n$ is not a prime,” essentially forgetting about DeMorgan. (He must roll over in his grave a lot.)
  • The negation of “$x\gt0$” is “$x\leq0$”. It is not “$x\lt0$”. This is a very common mistake.

These examples are difficulties caused by not understanding the math. They are not directly caused by difficulties with the languages of math.

Negating expressions containing parenthetic assertions

Suppose you want to prove:

“If $f:\mathbb{R}\to\mathbb{R}$ is differentiable, then $f$ is continuous”.

A good way to do this is by using the contrapositive. A mechanical way of writing the contrapositive is:

“If $f$ is not continuous, then $f:\mathbb{R}\to\mathbb{R}$ is not differentiable.”

That is not good. The sentence needs to be massaged:

“If $f:\mathbb{R}\to\mathbb{R}$ is not continuous, then $f$ is not differentiable.”

Even better would be to write the original sentence as:

“Suppose $f:\mathbb{R}\to\mathbb{R}$. Then if $f$ is differentiable, then $f$ is continuous.”

This is discussed in detail in David Butler’s post Contrapositive grammar.

Conjecture

Students need to be taught to understand parenthetic assertions that occur in the symbolic language and to learn to extract a parenthetic assertion and write it as a standalone assertion ahead of the statement it occurs in.

Scope

The scope of a word or variable consists of the part of the text for which its current definition is in effect.

Examples

  • “Suppose $n$ is divisible by $4$.” The scope is probably the current paragraph or perhaps the current proof. This means that the properties of $n$ are constrained in that section of the text.
  • “In this book, all rings are unitary.” This will hold for the whole book.

There are many more examples in the abstractmath.org article Scope.

If you are a grasshopper (you like to dive into the middle of a book or paper to find out what it says), knowing the scope of a variable can be hard to determine. It is particularly difficult for commonly used words or symbols that have been defined differently from the usual usage. You may not suspect that this has happened since it might be define once early in the text. Some books on writing mathematics have urged writers to keep global definitions to a minimum. This is good advice.

Finding the scope is considerably easier when the text is online and you can search for the definition.

Conjecture

Knowing the scope of a word or variable can be difficult. It is particular hard when the word or variable has a large scope (chapter or whole book.)

Variables

Variables are often introduced in math writing and then used in the subsequent discussion. In a complicated discussion, several variables may be referred to that have different statuses, some of them introduced several pages before. There are many particular ways discussed below that can cause trouble for students. This post is restricted to trouble in connection with the languages of math. The concept of variable is difficult in itself, not just because of the way the math languages represent them, but that is not covered here.

Much of this part of the post is based on work of Susanna Epp, including three papers listed in the references. Her papers also include many references to other work in the math ed literature that have to do with understanding variables.

See also Variables in abstractmath.org and Variables in Wikipedia.

Types

Students blunder by forgetting the type of the variable they are dealing with. The example given previously of problems with matrix multiplication is occasioned by forgetting the type of a variable.

Conjecture

Students sometimes have problems because they forget the data type of the variables they are dealing with. This is primarily causes by overloaded notation.

Dependent and independent

If you define $y=x^2+1$, then $x$ is an independent variable and $y$ is a dependent variable. But dependence and independence of variablesare more general than that example suggests.
In an epsilon-delta proof of the limit of a function (example below,) $\varepsilon$ is independent and $\delta$ is dependent on $\varepsilon$, although not functionally dependent.

Conjecture

Distinguishing dependent and independent variables causes problems, particularly when the dependence is not clearly functional.

I recently ran across a discussion of this on the internet but failed to record where I saw it. Help!

Bound and free

This causes trouble with integration, among other things. It is discussed in abstractmath.org in Variables and Substitution. I expect to add some references to the math ed literature soon.

Instantiation

Some of these variables may be given by existential instantiation, in which case they are dependent on variables that define them. Others may be given by universal instantiation, in which case the variable is generic; it is independent of other variables, and you can’t impose arbitrary restrictions on it.

Existential instantiation

A theorem that an object exists under certain conditions allows you to name it and use it by that name in further arguments.

Example

Suppose $m$ and $n$ are integers. Then by definition, $m$ divides $n$ if there is an integer $q$ such that $n=qm$. Then you can use “$q$” in further discussion, but $q$ depends on $m$ and $n$. You must not use it with any other meaning unless you start a new paragraph and redefine it.

So the following (start of a) “proof” blunders by ignoring this restriction:

Theorem: Prove that if an integer $m$ divides both integers $n$ and $p$, then $m$ divides $n+p$.

“Proof”: Let $n = qm$ and $p = qm$…”

Universal instantiation

It is a theorem that for any integer $n$, there is no integer strictly between $n$ and $n+1$. So if you are given an arbitrary integer $k$, there is no integer strictly between $k$ and $k+1$. There is no integer between $42$ and $43$.

By itself, universal instantiation does not seem to cause problems, provided you pay attention to the types of your variables. (“There is no integer between $\pi$ and $\pi+1$” is false.)

However, when you introduce variables using both universal and existential quantification, students can get confused.

Example

Consider the definition of limit:

Definition: $\lim_{x\to a} f(x)=L$ if and only if for every $\epsilon\gt0$ there is a $\delta\gt0$ for which if $|x-a|\lt\delta$ then $|f(x)-L|\lt\epsilon$.

A proof for a particular instance of this definition is given in detail in Rabbits out of a Hat. In this proof, you may not put constraints on $\epsilon$ except the given one that it is positive. On the other hand, you have to come up with a definition of $\delta$ and prove that it works. The $\delta$ depends on what $f$, $a$ and $L$ are, but there are always infinitely many values of $\delta$ which fit the constraints, and you have to come up with only one. So in general, two people doing this proof will not get the same answer.

Reference

Susanna Epp’s paper Proof issues with existential quantification discusses the problems that students have with both existential and universal quantification with excellent examples. In particular, that paper gives examples of problems students have that are not hinted at here.

References

A nearly final version of The Handbook of Mathematical Discourse is available on the web with links, including all the citations. This version contains some broken links. I am unable to recompile it because TeX has evolved enough since 2003 that the source no longer compiles. The paperback version (without the citations) can be bought as a book here. (There are usually cheaper used versions on Amazon.)

Abstractmath.org is a website for beginning students in abstract mathematics. It includes most of the material in the Handbook, but not the citations. The Introduction gives you a clue as to what it is about.

Two languages

My take on the two languages of math are discussed in these articles:

The Language of Mathematics, by Mohan Ganesalingam, covers these two languages in more detail than any other book I know of. He says right away on page 18 that mathematical language consists of “textual sentences with symbolic material embedded like ‘islands’ in the text.” So for him, math language is one language.

I have envisioned two separate languages for math in abstractmath.org and in the Handbook, because in fact you can in principle translate any mathematical text into either English or logical notation (first order logic or type theory), although the result in either case would be impossible to understand for any sizeable text.

Topics in abstractmath.org

Context-sensitive interpretation.

“If” in definitions.

Mathematical English.

Parenthetic assertion.

Scope

Semantic contamination.

Substitution.

The symbolic language of math

Variables.

Zooming and Chunking.

Topics in the Handbook of mathematical discourse.

These topics have a strong overlap with the topics with the same name in abstractmath.org. They are included here because the Handbook contains links to citations of the usage.

Context-sensitive.

“If” in definitions.

Parenthetic assertion.

Substitution.

Posts in Gyre&Gimble

Names

Naming mathematical objects

Rabbits out of a Hat.

Semantics of algebra I.

Syntactic and semantic thinkers

Technical meanings clash with everyday meanings

Thinking without words.

Three kinds of mathematical thinkers

Variations in meaning in math.

Other references

Contrapositive grammar, blog post by David Butler.

Proof issues with existential quantification, by Susanna Epp.

The role of logic in teaching proof, by Susanna Epp (2003).

The language of quantification in mathematics instruction, by Susanna Epp (1999).

The Language of Mathematics: A Linguistic and Philosophical Investigation
by Mohan Ganesalingam, 2013. (Not available from the internet.)

On the communication of mathematical reasoning, by Atish Bagchi, and Charles Wells (1998a), PRIMUS, volume 8, pages 15–27.

Variables in Wikipedia.

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 2.5 License.

Send to Kindle

Notation for sets

This is a revision of the section of abstractmath.org on notation for sets.

Sets of numbers

The following notation for sets of numbers is fairly standard.

Remarks

  • Some authors use $\mathbb{I}$ for $\mathbb{Z}$, but $\mathbb{I}$ is also used for the unit interval.
  • Many authors use $\mathbb{N}$ to denote the nonnegative integers instead
    of the positive ones.
  • To remember $\mathbb{Q}$, think “quotient”.
  • $\mathbb{Z}$ is used because the German word for “integer” is “Zahl”.

Until the 1930’s, Germany was the world center for scientific and mathematical study, and at least until the 1960’s, being able to read scientific German was was required of anyone who wanted a degree in science. A few years ago I was asked to transcribe some hymns from a German hymnbook — not into English, but merely from fraktur (the old German alphabet) into the Roman alphabet. I sometimes feel that I am the last living American to be able to read fraktur easily.

Element notation

The expression “$x\in A$” means that $x$ is an element of the set $A$. The expression “$x\notin A$” means that $x$ is not an element of $A$.

“$x\in A$” is pronounced in any of the following ways:

  • “$x$ is in $S$”.
  • “$x$ is an element of $S$”.
  • “$x$ is a member of $S$”.
  • “$S$ contains $x$”.
  • “$x$ is contained in $S$”.

Remarks

  • Warning: The math English phrase “$A$ contains $B$” can mean either “$B\in A$” or “$B\subseteq A$”.
  • The Greek letter epsilon occurs in two forms in math, namely $\epsilon$ and $\varepsilon$. Neither of them is the symbol for “element of”, which is “$\in$”. Nevertheless, it is not uncommon to see either “$\epsilon$” or “$\varepsilon$” being used to mean “element of”.
Examples
  • $4$ is an element of all the sets $\mathbb{N}$, $\mathbb{Z}$, $\mathbb{Q}$, $\mathbb{R}$, $\mathbb{C}$.
  • $-5\notin \mathbb{N}$ but it is an element of all the others.

List notation

Definition: list notation

A set with a small number of elements may be denoted by listing the elements inside braces (curly brackets). The list must include exactly all of the elements of the set and nothing else.

Example

The set $\{1,\,3,\,\pi \}$ contains the numbers $1$, $3$ and $\pi $ as elements, and no others. So $3\in \{1,3,\pi \}$ but $-3\notin \{1,\,3,\,\pi \}$.

Properties of list notation

List notation shows every element and nothing else

If $a$ occurs in a list notation, then $a$ is in the set the notation defines.  If it does not occur, then it is not in the set.

Be careful

When I say “$a$ occurs” I don’t mean it necessarily occurs using that name. For example, $3\in\{3+5,2+3,1+2\}$.

The order in which the elements are listed is irrelevant

For example, $\{2,5,6\}$ and $\{5,2,6\}$ are the same set.

Repetitions don’t matter

$\{2,5,6\}$, $\{5,2,6\}$, $\{2,2,5,6 \}$ and $\{2,5,5,5,6,6\}$ are all different representations of the same set. That set has exactly three elements, no matter how many numbers you see in the list notation.

Multisets may be written with braces and repeated entries, but then the repetitions mean something.

When elements are sets

When (some of) the elements in list notation are themselves sets (more about that here), care is required.  For example, the numbers $1$ and $2$  are not elements of the set \[S:=\left\{ \left\{ 1,\,2,\,3 \right\},\,\,\left\{ 3,\,4 \right\},\,3,\,4 \right\}\]The elements listed include the set $\{1, 2, 3\}$ among others, but not the number $2$.  The set $S$ contains four elements, two sets and two numbers. 

Another way of saying this is that the element relation is not transitive: The facts that $A\in B$ and $B\in C$ do not imply that $A\in C$. 

Sets are arbitrary

  • Any mathematical object can be the element of a set.
  • The elements of a set do not have to have anything in common.
  • The elements of a set do not have to form a pattern.
Examples
  • $\{1,3,5,6,7,9,11,13,15,17,19\}$ is a set. There is no point in asking, “Why did you put that $6$ in there?” (Sets can be arbitrary.)
  • Let $f$ be the function on the reals for which $f(x)=x^3-2$. Then \[\left\{\pi^3,\mathbb{Q},f,42,\{1,2,7\}\right\}\] is a set. Sets do not have to be homogeneous in any sense.


Setbuilder notation

Definition:

Suppose $P$ is an assertion. Then the expression “$\left\{x|P(x) \right\}$” denotes the set of all objects $x$ for which $P(x)$ is true. It contains no other elements.

  • The notation “$\left\{ x|P(x) \right\}$” is called setbuilder notation.
  • The assertion $P$ is called the defining condition for the set.
  • The set $\left\{ x|P(x) \right\}$ is called the truth set of the assertion $P$.
Examples

In these examples, $n$ is an integer variable and $x$ is a real variable..

  • The expression “$\{n| 1\lt n\lt 6 \}$” denotes the set $\{2, 3, 4, 5\}$. The defining condition is “$1\lt n\lt 6$”.  The set $\{2, 3, 4, 5\}$ is the truth set of the assertion “n is an integer and $1\lt n\lt 6$”.
  • The notation $\left\{x|{{x}^{2}}-4=0 \right\}$ denotes the set $\{2,-2\}$.
  • $\left\{ x|x+1=x \right\}$ denotes the empty set.
  • $\left\{ x|x+0=x \right\}=\mathbb{R}$.
  • $\left\{ x|x\gt6 \right\}$ is the infinite set of all real numbers bigger than $6$.  For example, $6\notin \left\{ x|x\gt6 \right\}$ and $17\pi \in \left\{ x|x\gt6 \right\}$.
  • The set $\mathbb{I}$ defined by $\mathbb{I}=\left\{ x|0\le x\le 1 \right\}$ has among its elements $0$, $1/4$, $\pi /4$, $1$, and an infinite number of
    other numbers. $\mathbb{I}$ is fairly standard notation for this set – it is called the unit interval.

Usage and terminology

  • A colon may be used instead of “|”. So $\{x|x\gt6\}$ could be written $\{x:x\gt6\}$.
  • Logicians and some mathematicians called the truth set of $P$ the extension of $P$. This is not connected with the usual English meaning of “extension” as an add-on.
  • When the assertion $P$ is an equation, the truth set of $P$ is usually called the solution set of $P$. So $\{2,-2\}$ is the solution set of $x^2=4$.
  • The expression “$\{n|1\lt n\lt6\}$” is commonly pronounced as “The set of integers such that $1\lt n$ and $n\lt6$.” This means exactly the set $\{2,3,4,5\}$. Students whose native language is not English sometimes assume that a set such as $\{2,4,5\}$ fits the description.

Setbuilder notation is tricky

Looking different doesn’t mean they are different.

A set can be expressed in many different ways in setbuilder notation. For example, $\left\{ x|x\gt6 \right\}=\left\{ x|x\ge 6\text{ and }x\ne 6 \right\}$. Those two expressions denote exactly the same set. (But $\left\{x|x^2\gt36 \right\}$ is a different set.)

Russell’s Paradox

In certain areas of math research, setbuilder notation can go seriously wrong. See Russell’s Paradox if you are curious.

Variations on setbuilder notation

An expression may be used left of the vertical line in setbuilder notation, instead of a single variable.

Giving the type of the variable

You can use an expression on the left side of setbuilder notation to indicate the type of the variable.

Example

The unit interval $I$ could be defined as \[\mathbb{I}=\left\{x\in \mathrm{R}\,|\,0\le x\le 1 \right\}\]making it clear that it is a set of real numbers rather than, say rational numbers.  You can always get rid of the type expression to the left of the vertical line by complicating the defining condition, like this:\[\mathbb{I}=\left\{ x|x\in \mathrm{R}\text{ and }0\le x\le 1 \right\}\]

Other expressions on the left side

Other kinds of expressions occur before the vertical line in setbuilder notation as well.

Example

The set\[\left\{ {{n}^{2}}\,|\,n\in \mathbb{Z} \right\}\]consists of all the squares of integers; in other words its elements are 0,1,4,9,16,….  This definition could be rewritten as $\left\{m|\text{ there is an }n\in \mathrm{}\text{ such that }m={{n}^{2}} \right\}$.

Example

Let $A=\left\{1,3,6 \right\}$.  Then $\left\{ n-2\,|\,n\in A\right\}=\left\{ -1,1,4 \right\}$.

Warning

Be careful when you read such expressions.

Example

The integer $9$ is an element of the set \[\left\{{{n}^{2}}\,|\,n\in \text{ Z and }n\ne 3 \right\}\]It is true that $9={{3}^{2}}$ and that $3$ is excluded by the defining condition, but it is also true that $9={{(-3)}^{2}}$ and $-3$ is not an integer ruled out by the defining condition.

Reference

Sets. Previous post.

Acknowledgments

Toby Bartels for corrections.

Creative Commons License< ![endif]>

This work is licensed under a Creative Commons Attribution-ShareAlike 2.5 License.

Send to Kindle

Rabbits out of a hat

This is a revision and expansion of the entry on rabbits in the abstractmath article Dysfunctional attitudes and behaviors.

Rabbits

Sometimes when you are reading or listening to a proof you will find yourself following each step but with no idea why these steps are going to give a proof. This can happen with the whole structure of the proof or with the sudden appearance of a step that seems like the prover pulled a rabbit out of a hat . You feel as if you are walking blindfolded.

Example (mysterious proof structure)

The lecturer says he will prove that for an integer $n$, if $n^2$ is even then $n$ is even. He begins the proof: Let $n^2$ be odd” and then continues to the conclusion, “Therefore $n$ is odd.”

Why did he begin a proof about being even with the assumption that $n$ is odd?

The answer is that in this case he is doing a proof by contrapositive . If you don’t recognize the pattern of the proof you may be totally lost. This can happen if you don’t recognize other forms, for example contradiction and induction.

Example (rabbit)

You are reading a proof that $\underset{x\to2}{\mathop{\lim }}{{x}^{2}}=4$. It is an $\varepsilon \text{-}\delta$ proof, so what must be proved is:

  • For any positive real number $\varepsilon $,
  • there is a positive real number $\delta $ for which:
  • if $\left| x-2 \right|\lt\delta$ then
  • $\left| x^2-4 \right|\lt\varepsilon$.

Proof

Here is the proof, with what I imagine might be your agitated reaction to certain steps. Below is a proof with detailed explanations .

1) Suppose $\varepsilon \gt0$ is given.

2) Let $\delta =\text{min}\,(1,\,\frac{\varepsilon }{5})$ (the minimum of the two numbers 1 and $\frac{\varepsilon}{5}$ ).

Where the *!#@! did that come from? They pulled it out of thin air! I can’t see where we are going with this proof!

3) Suppose that $\left| x-2 \right|\lt\delta$.

4) Then $\left| x-2 \right|\lt1$ by (2) and (3).

5) By (4) and algebra, $\left|x+2 \right|\lt5$.

Well, so what? We know that $\left| x+39\right|\lt42$ and lots of other things, too. Why did they do this?

6) Also $\left| x-2 \right|\lt\frac{\varepsilon }{5}$ by (2) and(3).

7) Then $\left| {{x}^{2}}-4\right|=\left| (x-2)(x+2) \right|\lt\frac{\varepsilon }{5}\cdot 5=\varepsilon$ by (5) and (6). End of Proof.

Remarks

This proof is typical of proofs in texts.

  • Steps 2) and 5) look like they were rabbits pulled out of a hat.
  • The author gives no explanation of where they came from.
  • Even so, each step of the proof follows from previous steps, so the proof is correct.
  • Whether you are surprised or not has nothing to do with whether it is correct.
  • In order to understand a proof, you do not have to know where the rabbits came from.
  • In general, the author did not think up the proof steps in the order they occur in the proof. (See this remark in the section on Forms of Proofs.) See also look ahead.

Proof with detailed explanations

  1. Suppose $\varepsilon >0$ is given. (We are starting a proof by universal generalization.)
  2. Let $\delta$ be the minimum of the two numbers $1$ and $\frac{\varepsilon}{5}$). (Rabbit out of the hat. You can “let” any symbol mean anything you want, so this is a legitimate thing to do even if you don’t see where this is all going.{
  3. Suppose $\left|x-2\right|\lt\delta$. (We are about to prove the conditional statement “If $\left| x-2 \right|\lt\delta$ then $\left| {{x}^{2}}-4 \right|\lt\varepsilon$” and we are proceeding by the direct method.)
  4. Then $\left| x-2 \right|\lt 1$ by (2) and (3). (The fact that $\delta =\text{min}\,(1,\,\frac{\varepsilon }{5})$ means that $\delta \le 1$ and that $\delta \le \frac{\varepsilon }{5}$. Since $\left| x-2 \right|\lt \delta $, the statement $\left| x-2 \right|\lt 1$ follows by transitivity of “$\lt $”. This is another rabbit. WHY do we want $\left| x-2 \right|\lt 1$? Be Patient.)
  5. By (4) and algebra, $\left| x+2 \right|\lt 5$. ($\left| x-2 \right|\lt 1$ means that $-1\lt x-2\lt 1$. Add $4$ to each term in this equation to get $3\lt x+2\lt 5$. This is another rabbit, but it is a correct statement!)
  6. Also $\left| x-2 \right|\lt \frac{\varepsilon }{5}$ by (2) and (3). ((2) says that $\delta\le\frac{\varepsilon }{5}$ and (3) says that $\left| x-2 \right|\lt\delta$, so $\left| x-2 \right|\lt \frac{\varepsilon }{5}$ follows by transitivity.)
  7. Then $\left| {{x}^{2}}-4\right|=\left| (x-2)(x+2) \right|\lt\frac{\varepsilon }{5}\cdot 5=\varepsilon$ by (5) and (6). End of Proof. (This last statement actually shows the algebra.)

Coming up with that proof

The author did not think up the proof steps in the order they occur in the proof. She looked ahead at the goal of proving that \[\left| {{x}^{2}}-4\right|\lt\varepsilon\] and thought of factoring the left side. Now she must prove that \[\left| (x-2)(x+2) \right|\lt\varepsilon\]

But if $\left|x-2\right|$ is small then $x$ has to be close to $2$, so that $x + 2$ can’t be too big. Since the only restriction on $\delta$ is that it has to be positive, let’s restrict it to being smaller than $1$. (The choice of $1$ is purely arbitrary. Any positive real number would do.)

In that case step (5) shows that $\left|x+2\right|\lt5$.. So how small do you have to make to make $\varepsilon$? In other words, how small do you have to make $\delta $ to make $\left| 5(x-2) \right|\lt\varepsilon$ (remembering that $\left| x-2 \right|\lt\delta $). Well, clearly $\frac{\varepsilon }{5}$ will do!

That explains her choice of $\delta$ be the minimum of the two numbers $1$ and $\frac{\varepsilon}{5}$. Notice that that choice is made very early in the proof but it was made only after experimenting with the sizes of $\left|x-2\right|$ and $\left|x+2\right|$.

You can check that if she had chosen to restrict $\delta $ to being less than 42, then she would need $\delta =\text{min}\,(42,\,\frac{\varepsilon }{47})$.

Acknowledgments

Thanks to Robert Burns for corrections and suggestions

Send to Kindle

Forms of proofs

Abstractmath.org is a website I have been maintaining since 2005. It is intended for people beginning the study of abstract math, often a course that requires proofs and thinking about mathematical structures. The Introduction to the website and the article Attitude explain the website in more detail.

One of the chapters in abstractmath.org covers Proofs. As everywhere in abstractmath.org, there is no attempt at complete coverage: the emphasis is on aspects that cause difficulty for abstraction-newbies. In the case of proofs, this includes sections on how proofs are written (math language is a big emphasis all over abstractmath.org). One of those sections is Forms of Proof. This post is a fairly extensive revision of that section.

More than half of the section on Proofs has already been revised (the ones entitled “abstractmath.org 2.0)”, and my current task is to finish that revision.

Normally, I post the actual article here on Gyre&Gimble, but something has changed in the operation of WordPress which causes the html processor to obey linebreaks in the input, which would make the article look chaotic.

So this time, I have to ask you to click a button to read the revised section on Forms of Proof. I apologize for the excessive effort by your finger.
 

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 2.5 License.

Send to Kindle

The role of proofs in mathematical writing

This post outlines the way that proofs are used in mathematical writing. I have been revising the chapter on Proofs in abstractmath.org, and I felt that giving an overview would keep my mind organized when I was enmeshed in writing up complicated details.

Proofs are the sole method for ensuring that a math statement is correct.

  • Evidence that something is true gooses us into trying to prove it, but as all research mathematicians know, evidence only means that some instances are true, nothing else.
  • Intuition, metaphors, analogies may lead us to come up with conjectures. If the gods are smiling that day, they may even suggest a method of proof. And that method may even (miracle) work. Sometimes. If it does, we get a theorem, but not a Fields medal.
  • Students may not know these facts about proof. Indeed, students at the very beginning probably don’t know what a proof actually is: “Proof” in math is not at all the same as “proof” in science or “proof” in law.

A proof has two faces: Its logical structure and its presentation.

The logical structure of a proof consists of methods of compounding and quantifying assertions and methods of deduction.

  • The logical structure is usually expressed as a mathematical object.
  • The most familiar such math objects are the predicate calculus and type theory.
  • Mathematical logic does not have standard terminology (see Math reasoning.) Because of that, the chapter on Proofs uses English words, for example “or” instead of symbols such as $P\lor Q$ or $P+Q$ or $P||Q$.
  • For beginning students, throwing large chunks of mathematical logic at them doesn’t work. The expressions and the rules of deduction need to be introduced to them in context, and in my opinion using few or no logical symbols.
  • Students vary widely in their ability to grasp foreign languages, and symbolic logic in any of its forms is a foreign language. (So is algebra; see my rant.)
  • The rules of deduction do not come naturally to the students, and yet they need to have the rules operate automatically and subconsciously. They should know the names of the nonobvious rules, like “proof by contradiction” and “induction”, but teaching them to be fluent with logical notation is probably a waste of time, since they would have to learn the rules of deduction and a new foreign language at the same time.
  • I hasten to add, a waste of time for beginning students. There are good reasons for students aiming at certain careers to be proficient in type theory, and maybe even for predicate calculus.

Presentation of proofs

  • Proofs are usually written in narrative form
  • A major source of difficulties is that the presentation of a proof (the way it is written in narrative form) omits the reasons that most of the proof steps follow from preceding ones.
  • Some of the omitted reasons may depend on knowledge the reader does not have. “Let $S\subset\mathbb{Q}\times\mathbb{Q}$. Let $i:S\to\mathbb{N}$ be a bijection…” Note: I am not criticizing someone who writes an argument like this, I am just saying that it is a problem for many beginning students.
  • Some reasons are given for some of the steps, presumably ones that the writer thinks might not be obvious to the reader.
  • Sometimes the narrative form gives a clue to the form of proof to be used. Example: “Prove that the length $C$ of the hypotenuse of a right triangle is less than the sum of the other two sides $A$ and $B$. Proof: Assume $C\geq A+B$…” So you immediately know that this is going to be a proof by contradiction. But you have to teach the student to recognize this.
  • Another example: in proving $P$ implies $Q$, the author will assume that $Q$ is false implies $P$ is false without further comment. The reader is suppose to recognize the proof by contrapositive.

Translation problem

  • The Translation problem is the problem of translating a narrative proof into the logical reasoning needed to see that it really is a proof.
  • Many experienced professional mathematicians say it is so hard for them to read a narrative proof that they read the theorem and the try to recreate the proof by thinking about it and glancing at the written proof for hints from time to time. That is a sign of how difficult the translation problem really is.
  • Nevertheless, the students need to learn the unfamiliar proof techniques such as contrapositive and contradiction and the wording tricks that communicate proof methodology. Learning this is hard work. It helps for teachers to be more explicit about the techniques and tricks with students who are beginning math major courses.

References

Added 2014-12-19

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 2.5 License.

Send to Kindle

Sets

I have been working my way through abstractmath.org, revising the articles and turning them into pure HTML so they will be easier to update. In some cases I am making substantial revisions. In particular, many of the articles need a more modern point of view.

 

The math community’s understanding of sets and structures has changed because of category theory and will change
because of homotopy type theory.

 

This post considers some issues and possibilities concerning the chapter on sets.

The references listed at the end of the article include several about homotopy type theory. They provide different viewpoints and require different levels of sophistication.

A specification of the concept of set

The abmath article Specification of sets specifies what a set is in this way:

A set is a single math object distinct from but completely determined by what its elements are.

I have used this specification for sets since the eighties, first in my Discrete Math lecture notes and then in abstractmath.org. It has proved useful because it is quite simple and the statement implies lots of immediate consequences. Each of the first four consequences in this list below exposes a confusion that some students have.

Consequences of the specification

  1. A set is a math object. It has the same status as the number “$143$” and the sine function and the real line: they are all objects of math. A set is not merely a typographically convenient way to define a certain collection of things.
  2. A set is a single object. Many beginners seem to have in their head that the set $\{3,4\}$ is two things.
  3. A set is distinct from its elements. The set $\{3,4\}$ is not $3$, it is not $4$, it is not a number at all.
  4. The spec implies that $\{3,4\}$ is the same set as $\{4,3\}$. Some students think they understand this but some of their mistakes show that they don’t really understand it.
  5. On the other hand, $\{3,5\}$ is a different set from $\{3,4\}$. I haven’t noticed this bothering students but it bothers me. See the discussion on ursets below.

Those consequences make the spec a useful teaching tool. But if a beginning abstract math student gets very far in their studies, some complications come up.

Defining “set”

In the late nineteenth century, math people started formally defining particular math structures such as groups and various
kinds of spaces. This was normally done by starting with a set and adding structure.

You may think that “starting with a set and adding structure” brushes a lot of complications under the rug. Well, don’t look under the rug, at least not right now.

The way they thought about sets was a informal version of what is now called naive set theory. In particular, they freely defined particular sets using what is essentially setbuilder notation, producing sets in a way which (I claim) satisfies my specification.

Bertrand Russell wakes everyone up

Then along came Russell’s paradox. In the context of this discussion, the paradox implied that the spec for sets is not a definition.The spec provides a set of necessary conditions for being a set. But it is not sufficient. You can say “Let $S$ be the set of all sets that…[satisfy some condition]” until you are blue in the face, but there are conditions (including the empty condition) that don’t define a set.

The Zermelo-Fraenkel axioms

The Zermelo-Fraenkel axioms were designed to provide a definition that didn’t create contradictions. The axioms accomplish this by creating a sort of hierarchy that requires that each set must be defined in terms of sets defined previously. They provide a good way (but not the only one) of providing a way of legitimizing our use of sets in math.

Observe that the “set of all sets” is certainly not “defined” in terms of previously defined sets!

Sets as a foundation

During those days there was a movement to provide a solid foundation for mathematics. After Zermelo-Fraenkel came along, the progress of thinking seemed to be:

  1. Sets are in trouble.
  2. Zermelo-Fraenkel solves our set difficulties.
  3. So let’s require that every math object be a set.

That list is oversimplified. In particular, the development of predicate logic was essential to this approach, but I can’t write about everything at once.

This leads to monsters such as the notorious definition of ordered pair:

The ordered pair $(a,b)$ is the set $\{a,\{b\}\}$.

This leads to the ludicrous statement that $a$ is an element of $(a,b)$ but that $b$ is not.

By saying every math object may be modeled as a set with structure, ZF set theory becomes a model of all of math. This approach gives a useful proof that all of math is as consistent as ZF set theory is.

But many mathematicians jumped to the conclusion that every math object must be a set with structure. This approach does not match the way mathematicians think about math objects. In particular, it makes computerized proof assistance hard to use because you have to translate your thinking into sets and first order logic.

Sets by category theory

“A mathematical object is determined by the role it plays in a category.” — A. Grothendieck

In category theory, you define math structures in terms of how they relate to other math structures. This shifts the emphasis from

What is it?

to

What are its properties?

For example, an ordered pair is a mathematical object $p$ determined by these properties:

  • It determines mathematical objects $p_1$ and $p_2$.
  • $p$ is completely determined by what $p_1$ is and what $p_2$ is.
  • If $p$ and $q$ are ordered pairs and $p_1=q_1$ and $p_2=q_2$ then $p=q$.

Categorical definition of set

“Categorical” here means “as understood in category theory”. It unfortunately has a very different meaning in model theory (set of axioms with only one model up to isomorphism) and in general usage, as in “My answer is categorically NO” said by someone who is red in the face. The word “categorial” has an entirely different meaning in linguistics. *Sigh*.

William Lawvere has produced an axiomatization of the category of sets.
The most accessible introduction to it that I know of is the article Rethinking set theory, by Tom Leinster. This axiomatization defines sets by their relationship with each other and other math objects in much the same way as the categorical definition of (for example) groups gives a definition of groups that works in any category.

“Set” means two different things

The word set as used informally has two different meanings.

  • According to my specification of sets, $\{3,4\}$ is a set and so is $\{3,5\}$.
  • $\{3,4\}$ and $\{3,5\}$ are not the same set because they don’t have the same elements.
  • But in the category of sets, any two $2$-element sets are isomorphic. (So are any two seven element sets.)
  • From a categorical point of view, two isomorphic objects in a category can be be thought of as the same object, with a caveat that you have better make it clear which isomorphism you are thinking of.

One of the great improvements in mathematics that homotopy type theory supplies is a systematic way of keeping track of the isomorphisms, the isomorphisms between the isomorphisms, and so on ad infinitum (literally). But note: I am just beginning to understand htt, so regard this remark as something to be suspicious of.

  • But $\{3,4\}$ and $\{3,5\}$ may not be thought of as the same object according to the spec I gave, because they don’t have the same elements.
  • This means that the traditional idea of set is not the same as the strict categorical idea of set.

I suggest that we keep the word “set” for the traditional concept and call the strict categorical concept an urset.

A traditional set is a structure on an urset

The traditional set $\{3,5\}$ consists of the unique two-element urset coindexed on the integers.

A (ur)set $S$ coindexed by a math structure $A$ is a monic map from $S$ to the underlying set of $A$. In this example, the map has codomain the integers and takes one element of the two-element urset to $3$ and the other to $5$.

Note added 2014-10-05 in response to Toby Bartels’ comment: I am inclined to use the names “abstract set” for “urset” and “concrete set” for coindexed sets when I revise the articles on sets. But most of the time we can get away with just “set”.

There is clearly no isomorphism of coindexed sets from $\{3,4\}$ to $\{3,5\}$, so those two traditional sets are not equal in the category of coindexed sets.

I made up the phrase “coindexed set” to use in this sense, since it is a kind of opposite of indexed set. If terminology for this already exists, lemme know. Linguists will tell you they use the word “coindexed” in a different sense.

Elements

The concept of “element” in categorical thinking is very different from the traditional idea, where an element of a set can be any mathematical object. In categorical thinking, an element of an object $A$ of a category $\mathbf{C}$ is an arrow $1\to A$ where $1$ is the terminal object. Thus $4$ as an integer is the arrow $1\to \mathbb{Z}$ whose unique value is the number $4$.

An object is an element of only one set

In the usage of category theory, the arrow $1\to\mathbb{R}$ whose value is the real number $4$ is a different math object from the arrow $1\to\mathbb{Z}$ whose value is the integer $4$.

A category theorist will probably agree that we can identify the integer $4$ with the real number $4$ via the well known canonical embedding of the ring of integers into the field of real numbers. But in categorical thinking you have to keep all such embeddings in mind; you don’t say the integer $4$ is the same thing as the real number $4$. (Most computer languages keep them distinct, too.)

This difference is actually not hard to get used to and is in fact an improvement over traditional set theory. When you do category theory you use lots of commutative diagrams. The embeddings show up as monic arrows and are essential in keeping the different objects ($\mathbb{Z}$ and $\mathbb{R}$ in the example) separate.

The paper Relating first-order set theory and elementary toposes, by Awodey, Butz, Simpson and Streicher, introduces a concept of “structural system of inclusions” that appears to me to restore the idea of object being an element of more than one set for many purposes.

Homotopy type theory allows an object to have only one type, with much the same effect as in the categorical approach.

Variable elements

The arrow $1\to \mathbb{Z}$ that picks out the integer $4$ is a constant function. It is useful to think of any arrow $A\to B$ of any category as a variable element (or generalized element) of the object $B$. For example, the function $f:\mathbb{R}\to \mathbb{R}$ defined by $f(x)=x^2$ allows you to
think of $x^2$ as a variable number with real parameter. This is another way of thinking about the “$y$” in the equation $y=x^2$, which is commonly called a dependent variable.

One way to think about $y$ is that some statements about it are true, some are false, and many statements are neither true nor false.

  • $y\geq 0$ is true.
  • $y\lt0$ is false.
  • $y\leq1$ is neither true nor false.

This way of thinking about variable objects clears up a lot of confusion about variables and deserves to be more widely used in teaching.

The book Category theory for computing science provides some examples of the use of variable elements as a way of thinking about categorical ideas.

References

Creative Commons License< ![endif]>

This work is licensed under a Creative
Commons Attribution-ShareAlike 2.5
License
.

Send to Kindle

Script and calligraphic styles in math writing

This is a draft of an addition to the entry Alphabets in abstractmath.org.

Mathematicians use the word script to refer to two rather different styles. Both of them apply only to uppercase letters.

Script








$A$: $\scr{A}$ $H$: $\scr{H}$ $O$: $\scr{O}$ $V$: $\scr{V}$
$B$: $\scr{B}$ $I$: $\scr{I}$ $P$: $\scr{P}$ $W$: $\scr{W}$
$C$: $\scr{C}$ $J$: $\scr{J}$ $Q$: $\scr{Q}$ $X$: $\scr{X}$
$D$: $\scr{D}$ $K$: $\scr{K}$ $R$: $\scr{R}$ $Y$: $\scr{Y}$
$E$: $\scr{E}$ $L$: $\scr{L}$ $S$: $\scr{S}$ $Z$: $\scr{Z}$
$F$: $\scr{F}$ $M$: $\scr{M}$ $T$: $\scr{T}$
$G$: $\scr{G}$ $N$: $\scr{N}$ $U$: $\scr{U}$

Calligraphic








$A$: $\cal{A}$ $H$: $\cal{H}$ $O$: $\cal{O}$ $V$: $\cal{V}$
$B$: $\cal{B}$ $I$: $\cal{I}$ $P$: $\cal{P}$ $W$: $\cal{W}$
$C$: $\cal{C}$ $J$: $\cal{J}$ $Q$: $\cal{Q}$ $X$: $\cal{X}$
$D$: $\cal{D}$ $K$: $\cal{K}$ $R$: $\cal{R}$ $Y$: $\cal{Y}$
$E$: $\cal{E}$ $L$: $\cal{L}$ $S$: $\cal{S}$ $Z$: $\cal{Z}$
$F$: $\cal{F}$ $M$: $\cal{M}$ $T$: $\cal{T}$
$G$: $\cal{G}$ $N$: $\cal{N}$ $U$: $\cal{U}$

Using script

  • In LaTeX, script letters are obtained using “\scr” and calligraphic using “\cal”. For example, “{\scr P}” gives ${\scr P}$. The file Script fonts for LaTeX shows how to get variations other than the ones shown above.
  • Both script and calligraphic are used to provide yet another type style for naming mathematical objects.
  • One of the most common uses is to refer to the powerset of a set $S$: ${\scr P}(S)$, ${\scr P}S$, ${\cal P}(S)$, ${\cal P}S$.
  • There may be some tendency to use script or cal to name objects that are in some way high in the hierarchy of objects or else a space that contains a lot of the stuff you are talking about. In most of the paper I found in a cursory exam of Jstor shows only a couple of exceptions (in Lie algebra). This is one of many places in abmath where I throw out examples of usages in math that I have found but have not verified through serious lexicographical research.
  • The names of categories are commonly denoted by script or calligraphic. Some authors have trouble because they want to put names of categories such as “Set” and “Grp” in cal or scr but don’t have lower case letters in those styles. In Toposes, Triples and Theories the online version went through several changes over the years. Category Theory for Computing Science uses bold for category names.
  • I have never run across a paper that used both script and calligraphic to mean two different things.

Acknowledgments

Thanks to JM Wilson for suggesting this topic and to the various people on Math Stack Exchange and Math Educators Stack Exchange who discussed script and cal.

References

Send to Kindle

More alphabets

This post is the third and last in a series of posts containing revisions of the abstractmath.org article Alphabets. The first two were:

Addition to the listings for the Greek alphabet

Sigma: $\Sigma,\,\sigma$ or ς: sĭg'mɘ. The upper case $\Sigma $ is used for indexed sums.  The lower case $\sigma$ (don't call it "oh") is used for the standard deviation and also for the sum-of-divisors function. The ς form for the lower case has not as far as I know been used in math writing, but I understood that someone is writing a paper that will use it.

Hebrew alphabet

Aleph, א is the only Hebrew letter that is widely used in math. It is the cardinality of the set of integers. A set with cardinality א is countably infinite. More generally, א is the first of the aleph numbers $א_1$, $א_2$, $א_3$, and so on.

Cardinality theorists also write about the beth (ב) numbers, and the gimel (ג) function. I am not aware of other uses of the Hebrew alphabet.

If you are thinking of using other Hebrew letters, watch out: If you type two Hebrew letters in a row in HTML they show up on the screen in reverse order. (I didn't know HTML was so clever.)

Cyrillic alphabet

The Cyrillic alphabet is used to write Russian and many other languages in that area of the world. Wikipedia says that the letter Ш, pronounced "sha", is the only Cyrillic letter used in math. I have not investigated further.

The letter is used in several different fields, to denote the Tate-Shafarevich group, the Dirac comb and the shuffle product.

It seems to me that there are a whole world of possibillities for brash young mathematicians to name mathematical objects with other Cyrillic letters. Examples:

  • Ж. Use it for a ornate construction, like the Hopf fibration or a wreath product.
  • Щ. This would be mean because it is hard to pronounce.
  • Ъ. Guaranteed to drive people crazy, since it is silent. (It does have a name, though: "Yehr".)
  • Э. Its pronunciation indicates you are unimpressed (think Fonz).
  • ю. Pronounced "you". "ю may provide a counterexample". "I do?"

Type styles

Boldface and italics

A typeface is a particular design of letters.  The typeface you are reading is Arial.  This is Times New Roman. This is Goudy. (Goudy may not render correctly on your screen if you don't have it installed.)

Typefaces typically come in several styles, such as bold (or boldface) and italic.

Examples



Arial Normal Arial italic Arial bold
Times Normal Times italic Times bold Goudy Normal Goudy italic Goudy bold

Boldface and italics are used with special meanings (conventions) in mathematics. Not every author follows these conventions.

Styles (bold, italic, etc.) of a particular typeface are supposedly called fonts.  In fact, these days “font” almost always means the same thing as “typeface”, so I  use “style” instead of “font”.

Vectors

A letter denoting a vector is put in boldface by many authors.

Examples
  • “Suppose $\mathbf{v}$ be an vector in 3-space.”  Its coordinates typically would be denoted by $v_1$, $v_2$ and $v_3$.
  • You could also define it this way:  “Let $\mathbf{v}=({{v}_{1}},{{v}_{2}},{{v}_{3}})$ be a vector in 3-space.”  (See parenthetic assertion.)

It is hard to do boldface on a chalkboard, so lecturers may use $\vec{v}$ instead of $\mathbf{v}$. This is also seen in print.

Definitions

The definiendum (word or phrase being defined) may be put in boldface or italics. Sometimes the boldface or italics is the only clue you have that the term is being defined. See Definitions.

Example

 

“A group is Abelian if its multiplication is commutative,” or  “A group is Abelian if its multiplication is commutative.”

Emphasis

Italics are used for emphasis, just as in general English prose. Rarely (in my experience) boldface may be used for emphasis.

In the symbolic language

It is standard practice in printed math to put single-letter variables in italics.   Multiletter identifiers are usually upright.

Example

Example: "$f(x)=a{{x}^{2}}+\sin x$".  Note that mathematicians would typically refer to $a$ as a “constant” or “parameter”, but in the sense we use the word “variable” here, it is a variable, and so is $f$.

Example

On the other hand, “e” is the proper name of a specific number, and so is “i”. Neither is a variable. Nevertheless in print they are usually given in italics, as in ${{e}^{ix}}=\cos x+i\sin x$.  Some authors would write this as ${{\text{e}}^{\text{i}x}}=\cos x+\text{i}\,\sin x$.  This practice is recommended by some stylebooks for scientific writing, but I don't think it is very common in math.

Blackboard bold

 

Blackboard bold letters are capital Roman letters written with double vertical strokes.   They look like this:

\[\mathbb{A}\,\mathbb{B}\,\mathbb{C}\,\mathbb{D}\,\mathbb{E}\,\mathbb{F}\,\mathbb{G}\,\mathbb{H}\,\mathbb{I}\,\mathbb{J}\,\mathbb{K}\,\mathbb{L}\,\mathbb{M}\,\mathbb{N}\,\mathbb{O}\,\mathbb{P}\,\mathbb{Q}\,\mathbb{R}\,\mathbb{S}\,\mathbb{T}\,\mathbb{U}\,\mathbb{V}\,\mathbb{W}\,\mathbb{X}\,\mathbb{Y}\,\mathbb{Z}\]

In lectures using chalkboards, they are used to imitate boldface.

In print, the most common uses is to represent certain sets of numbers:

Remarks

  • Mathe­ma­tica uses some lower case blackboard bold letters.
  • Many mathe­ma­tical writers disapprove of using blackboard bold in print.  I say the more different letter shapes that are available the better.  Also a letter in blackboard bold is easier to distinguish from ordinary upright letters than a letter in boldface is, particularly on computer screens.
Send to Kindle

The use of fraktur in math

This post is a revision of the part of the abmath article on alphabets concerning the fraktur typeface, followed by some corrections and remarks. A revision of the section on the Greek alphabet was posted previously.

Fraktur

In some math subjects, a font tamily (typeface) called fraktur, formerly used for writing German, Norwegian, and some other languages, is used to name math objects.  The table below shows the upper and lower case fraktur letters. 








$A,a$: $\mathfrak{A},\mathfrak{a}$ $H,h$: $\mathfrak{H},\mathfrak{h}$ $O,o$: $\mathfrak{O},\mathfrak{o}$ $V,v$: $\mathfrak{V},\mathfrak{v}$
$B,b$: $\mathfrak{B},\mathfrak{b}$ $I,i$: $\mathfrak{I},\mathfrak{i}$ $P,p$: $\mathfrak{P},\mathfrak{p}$ $W,w$: $\mathfrak{W},\mathfrak{w}$
$C,c$: $\mathfrak{C},\mathfrak{c}$ $J,j$: $\mathfrak{J},\mathfrak{j}$ $Q,q$: $\mathfrak{Q},\mathfrak{q}$ $X,x$: $\mathfrak{X},\mathfrak{x}$
$D,d$: $\mathfrak{D},\mathfrak{d}$ $K,k$: $\mathfrak{K},\mathfrak{k}$ $R,r$: $\mathfrak{R},\mathfrak{r}$ $Y,y$: $\mathfrak{Y},\mathfrak{y}$
$E,e$: $\mathfrak{E},\mathfrak{e}$ $L,l$: $\mathfrak{L},\mathfrak{l}$ $S,s$: $\mathfrak{S},\mathfrak{s}$ $Z,z$: $\mathfrak{Z},\mathfrak{z}$
$F,f$: $\mathfrak{F},\mathfrak{f}$ $M,m$: $\mathfrak{M},\mathfrak{m}$ $T,t$: $\mathfrak{T},\mathfrak{t}$  
$G,g$: $\mathfrak{G},\mathfrak{g}$ $N,n$: $\mathfrak{N},\mathfrak{n}$ $U,u$: $\mathfrak{U},\mathfrak{u}$  
  • Many of the forms are confusing and are commonly mispronounced by younger mathematicians.  (Ancient mathematicians like me have taken German classes in college that required learning fraktur.)  In particular the uppercase $\mathfrak{A}$ looks like $U$ but in fact is an $A$, and the uppercase $\mathfrak{I}$ looks like $T$ but is actually $I$.  
  • When writing on the board, some mathematicians use a cursive form when writing objects with names that are printed in fraktur.
  • Unicode regards fraktur as a typeface (font family) rather than as a different alphabet. However, unicode does provide codes for the fraktur letters that are used in math (no umlauted letters or ß). In TeX you type "\mathfrak{a}" to get $\mathfrak{a}$.
  • In my (limited) experience, native German speakers usually call this alphabet “Altschrift” instead of “Fraktur”.  It has also been called “Gothic”, but that word is also used to mean several other quite different typefaces (black­letter, sans serif and (gasp) the alphabet actually used by the Goths.
  • I have been doing mathematical research for around fifty years. It is clear to me that mathematicians' use of and familiarity with fraktur has declined a lot during that time. But it is not extinct. I have made a hasty and limited search of Jstor and found recent websites and research articles that use it in a variety of fields. There are also a few citations in the Handbook (search for "fraktur").

    • It is used in ring theory and algebraic number theory, in particular to denote ideals.
    • It is use in Lie algebra. In particular, the Lie algebra of a Lie group $G$ is commonly denoted by $\mathfrak{g}$.
    • The cardinality of the continuum is often denoted by $\mathfrak{c}$.
    • It is used occasionally in logic to denote models and other objects.
    • I remember that in the sixties and seventies fraktur was used in algebraic geometry, but I haven't found it in recent papers.

Acknowledgements

Thanks to Fernando Gouvêa for suggestions.

Remarks about usage in abstractmath.org

The Handbook has 428 citation for usages in the mathematical research literature. After finishing that book, I started abstractmath.org and decided that I would quote the Handbook for usages when I could but would not spend any more time looking for citations myself, which is very time consuming. Instead, in abmath I have given only my opinion about usage. A systematic, well funded project for doing lexicographical research in the math literature would undoubtedly show that my remarks were sometimes incorrect and very often, perhaps even usually, incomplete.

Corrections to the post The Greek alphabet in math

Willie Wong suggested some additional pronunciations for upsilon and omega:


Upsilon: $\Upsilon ,\,\upsilon$  ŭp'sĭlŏn; (Br) ĭp'sĭlŏn. (Note: I have never heard anyone pronounce this letter, and various dictionaries suggest a ridiculous number of different pronunciations.) Rarely used in math; there are references in the Handbook.


Omega: $\Omega ,\,\omega$: ōmā'gɘ, ō'māgɘ; (Br) ōmē'gɘ, ō'mēgɘ. $\Omega$ is often used as the name of a domain in $\mathbb{R}^n$. The set of natural numbers with the usual ordering is commonly denoted by $\omega$. Both forms have many other uses in advanced math.  

Send to Kindle