Category Archives: exposition

Comparing graph and cograph (Version 2)

This post has been superseded by the post Demos for graph and cograph of calculus functions.

New Version 6 July 2011

This is a new version of a post originally created on 30 June, 2011. –Charles Wells

When you put the graph and cograph of a function with parameters side by side, interesting things may happen.  I have created the files CographExample.nb and CographExample.cdf to illustrate this.

The .nb form is a Mathematica Notebook, which requires Mathematica to run and allows you to manipulate the objects and change the code in the notebook as you wish.  The .cdf file contains the same material and can be viewed using Mathematica CDF Player, which is available free here.  The CDF Player allows you to change the parameters with the slidebars, so that you can experience the phenomena discusses in the example, but you cannot otherwise modify the file.

You cannot include a Mathematica computable document directly into a Word Press document, so here are screenshots of the cograph example with several different settings of its parameters.

Some Screenshots and sample questions follow.  These not in the original version.  I added these thanks to encouragement by Sam Alexander.

Screenshots


Questions for discussion

My idea is that students will manipulate the slider to see what happens and do some algebra on the relations between a, b and x to explain the phenomena that occur.

Questions about the graph (left figure).

G1. Prove that the two straight lines are parallel for any choice of a and b.

G2. When do the red and blue straight lines in the graph coincide? Answer: The lines coincide when a=1 or b=0 .

  • “When do the…” translates into “for what values of a and b do the…”. I predict that which way you ask the question will make a big difference for some students. To answer this question, you are not solving for x but for a and b. If you ask “When…” they have to discover this for themselves.
  • The answer is disjunctive: This may be a new idea for some of the students.

G3. Find a formula in terms of a and b for the distance between the two straight lines in the graph. Answer: |b-ab|.

Questions about the cograph.

C1. When do the red and blue arrows in the cograph coincide? Answer: Same as answer to Question G1.

C2. In the cograph, for what aand b are the arrow targets for a given choice of x closer together than the arrow sources? Answer: $latex  |a|>1$. b is irrelevant.

C3. Manipulate a and b. For some values the blue arrows all cross each other at the same point. (Same question for red arrows.) When does this happen? Answer: When a is negative.

  • The abstract setting of the cograph is shifted by this question (and the next) as follows: The arrows originally provided a visual pointer from the input to the output of the function. All of a sudden we are treating them as mathematical objects(straight line segments in the plane).
  • The abstraction is also broken in another way: The space between the source line and the target line is just a visual separation, but after this question both lines lie on the xy plane. The question turns a visual illustration into a mathematical object.

C4.  Describe the common point where all the red arrows cross when a is negative. (Same question for blue arrows.) Answer: The point is \left(\frac{b}{1-a},\frac{3 a}{a-1}\right).

Send to Kindle

Computable algebraic expressions in tree form

Invisible algebra

  1. An  expression such as $4(x-2)=6$ has an invisible abstract structure.  In this simple case it is

using the style of presenting trees used in academic computing science.  The parentheses are a clue to the structure; omitting them results in  $4x-2=6$, which has the different structure

By the time students take calculus they supposedly have learned to perceive and work with this invisible structure, but many of them still struggle with it.  They have a lot of trouble with more complex expressions, but even something like $\sin x + y$ gives some of them trouble.

Make the invisible visible

The tree expression makes the invisible structure explicit. Some math educators such as Jason Dyer and Bret Victor have experimented with the idea of students working directly with a structured form of an algebraic expression, including making the structured form interactive.

How could the tree structure be used to help struggling algebra students?

1) If they are learning on the computer, the program could provide the tree structure at the push of a button. Lessons could be designed to present algebraic expressions that look similar but have different structure.

2) You could point out things such as:

a) “inside the parentheses pushes it lower in the tree”
b) “lower in the tree means it is calculated earlier”

3) More radically, you could teach algebra directly using the tree structure, with the intention of introducing the expression-as-a-string form later.  This is analogous to the use of the initial teaching alphabet for beginners at reading, and also the use of shape notes to teach sight reading of music for singing.  Both of these methods have been shown to help beginners, but the ITA didn’t catch on and although lots of people still sing from shape notes (See Note 1) they are not as far as I know used for teaching in school.

4) You could produce an interactive form of the structure tree that the student could use to find the value or solve the equation.  But that needs a section to itself.

Interactive trees

When I discovered the TreeForm command in Mathematica (which I used to make the trees above), I was inspired to use it and the Manipulate command to make the tree interactive.


This is a screenshot of what Mathematica shows you.  When this is running in Mathematica, moving the slide back and forth causes the dependent values in the tree also change, and when you slide to 3.5, the slot corresponding to $ 4(x-2)$ becomes 6 and the slot over “Equals” becomes “True”:

As seen in this post, these are just screen shots that you can’t manipulate.  The Mathematica notebook Expressions.nb gives the code for this and lets you experiment with it.  If you don’t have Mathematica available to you, you can still manipulate the tree with the slider if you download the CDF form of the notebook and open it in Mathematica CDF Player, which is available free here.  The abstractmath website has other notebooks you may want to look at as well.

Moving the slider back and forth constitutes finding the correct value of x by experiment.  This is a peculiar form of bottom-up evaluation.   With an expression whose root node is a value rather than an equation, wiggling the slider constitutes calculating various values with all the intermediate steps shown as you move it.  Bret Victor s blog shows a similar system, though not showing the tree.

Another way to use the tree is to arrange to show it with the calculated values blank.  (The constants and the labels showing the operation would remain.)   The student could start at the top blank space (over Times)  and put in the required value, which would obviously have to be 6 to make the space over Equals change to “True”.  Then the blank space over Plus would have to be 1.5 in order to make multiplying it by 4 be 6.  Then the bottom left blank space would have to be 3.5 to make it equal to 1.5 when -2 is added.  This is top down evaluation.

You could have the student enter these numbers in the blank spaces on the computer or print out the tree with blank spaces and have them do it with a pencil.  Jason Dyer’s blog has examples.

Implementation

My example code in the notebook is a kludge.  If you defined a  special VertexRenderingFunction for TreeForm in Mathematica, you could create a function that would turn any algebraic expression into a manipulatable tree with a slider like the one above (or one with blank spaces to be filled in).  [Note 2]. I expect I will work on that some time soon but my main desire in this series of blog posts is to through out ideas with some Mathematica code attached that others might want to develop further. You are free to reuse all the Mathematica code and all my blog posts under the Creative Commons Attribution – ShareAlike 3.0 License.  I would like to encourage this kind of open-source behavior.

Notes

1. Including me every Tuesday at 5:30 pm in Minneapolis (commercial).

2. There is a problem with Equals.  In the hacked example above I set the increment the value jumps by when the slider is moved to 0.1, so that the correct value 3.5 occurs when you slide.  If you had an equation with an irrational root this would not work.  One thing that should work is to introduce a fuzzy form of Equals with the slide-increment smaller that the latitude allowed in the fuzzy Equals.

Send to Kindle

Playing with Riemann Sums

I had a satori [Note 2].  I felt like the guy in the ads who sits in front of his new ultrafast computer with the wind blowing his hair back and bracing himself by holding onto the desk.  (My hair was dark then but I certainly was not wearing a tie.)

That convergence theorem was talking about something BIG.

I visualized a Cloud of Riemann Sums floating around and swerving closer to the Right Answer as their meshes decreased.

A Riemann Sum has a lot of parameters:

  • Its mesh.  This can be any positive real number.
  • Its choice of subintervals. Any positive integer!  There can be billions of subintervals.
  • And, ye gods, the individual choice of each evaluation point for each subinterval in each Riemann Sum

Those are three independent parameters, except for the constraint imposed by the mesh on each choice of subintervals.  [Note 3].

I tell my students that we have to zoom in and zoom out [Reference 2] from a problem.  When we zoom out a complicated structure is thought of as a point in a certain relationship with other structures-as-points.  Then to understand something we zoom in (selectively) to see the details that make it work.  What I remember from my satori is that I didn’t visualize them as points but rather as little blurs, sort of like the blurs in Mumford’s red book [Reference 3], which I think was the first non-constipated math text I had ever seen.

Riemann Sums in Mathematica

In the nineties, I was on a grant to create Mathematica programs for students, and one of the notebooks I created allowed you to easily exhibit Riemann sums with various parameters.  I also included code that would show a cloud.

Below is a cloud.  It is a plot of the values of 300 Riemann sums for \int_0^{\pi} \sin x \,dx.  They have randomly chosen meshes from 0 to \pi/2 and the subintervals and individual evaluation points for each subinterval are also chosen randomly.

The cloud below is a plot of the values of 300 Riemann sums for the area of the upper right quarter circle of radius 2 with center at origin.  Its meshes range from 0 to 1, and other properties are similar to the one above.  The vertical spread of the points is considerably bigger,  presumably because of the vertical tangent line at the right hand end of the integral.

When you click on the code for either of these you get a different cloud with the same parameters.

You can access the notebook containing the code for this via Abmath Gate.    Be sure to read the ReadMe file.

Notes

[1] This was 1961.  Of course the book didn’t say things such as “with any choice of points-to-evaluate-at”.  It said what it had to say in stilted academic prose which required reading it two or three times before understanding it.  Academic prose is much better these days.  See Reference [1].

I was quite good at reading complicated prose. My ACT scores were a tad higher in English or Language or whatever it is called that they were in Math.  With the Internet, math exposition should do much more with pictures, interactive things, and lots of examples (which don’t waste paper now).  But that is another diatribe…

[2] This is a snooty word for lightbulb flashing over your head.  Every once in awhile I give in to the temptation to use some obscure word to impress people as to the variety of things I know about.  Teachers, don’t do this to your students.  Other professors are fair game.

[3] The same choice of subinterval can correspond to many different meshes, if your definition of mesh requires only that each subinterval be narrower than the mesh, rather than requiring that the mesh be the size of the biggest subinterval.  (I had never thought about that until I wrote this.)

[4] The Mathematica Demonstrations website has several other notebooks that exhibit Riemann Sums.

References

[1]  The Revolution in Technical Exposition II, post on this blog.

[2]  Zooming and Chunking in abmath.

[3] D. Mumford, The Red Book of Varieties and Schemes (second expanded ed.), Springer Lecture Notes in Math 1358, Springer-Verlag, Berlin, 1999.   (I have not seen this edition.  What I remember is the Red Book as it was in the 1967 Algebraic Geometry Summer School at Bowdoin.  I hope the smudges survive in the new version.  As I remember the smudges were bigger for points that were more generic or something like that.  Those smudges caused me a kind of sartori, too.)

Send to Kindle

Endograph and cograph of real functions

This post is covered by the Creative Commons Attribution – ShareAlike 3.0 License, which means you may use, adapt and distribute the work provided you follow the requirements of the license.

Introduction

In the article Functions: Images and Metaphors in abstractmath I list a bunch of different images or metaphors for thinking about functions. Some of these metaphors have realizations in pictures, such as a graph or a surface shown by level curves. Others have typographical representations, as formulas, algorithms or flowcharts (which are also pictorial). There are kinetic metaphors — the graph of {y=x^2} swoops up to the right.

Many of these same metaphors have realizations in actual mathematical representations.

Two images (mentioned only briefly in the abstractmath article) are the cograph and the endograph of a real function of one variable. Both of these are visualizations that correspond to mathematical representations. These representations have been used occasionally in texts, but are not used as much as the usual graph of a continuous function. I think they would be useful in teaching and perhaps even sometimes in research.

A rough and unfinished Mathematica notebook is available that contains code that generate graphs and cographs of real-valued functions. I used it to generate most of the examples in this post, and it contains many other examples. (Note [1].)

The endograph of a function

In principle, the endograph (Note [2]) of a function {f} has a dot for each element of the domain and of the codomain, and an arrow from {x} to {f(x)} for each {x} in the domain. For example, this is the endograph of the function {n\mapsto n^2+1 \pmod 11} from the set {\{0,1,\ldots,10\}} to itself:


“In principle” means that the entire endograph can be shown only for small finite functions. This is analogous to the way calculus books refer to a graph as “the graph of the squaring function” when in fact the infinite tails are cut off.

Real endographs

I expect to discuss finite endographs in another post. Here I will concentrate on endographs of continuous functions with domain and codomain that are connected subsets of the real numbers. I believe that they could be used to good effect in teaching math at the college level.

Here is the endograph of the function {y=x^2} on the reals:

I have displayed this endograph with the real line drawn in the usual way, with tick marks showing the location of the points on the part shown.

The distance function on the reals gives us a way of interpreting the spacing and location of the arrowheads. This means that information can be gleaned from the graph even though only a finite number of arrows are shown. For example you see immediately that the function has only nonnegative values and that its increase grows with {x}.(See note [3]).

I think it would be useful to show students endographs such as this and ask them specific questions about why the arrows do what they do.

For the one shown, you could ask these questions, probably for class discussion rather that on homework.

  • Explain why most of the arrows go to the right. (They go left only between 0 and 1 — and this graph has such a coarse point selection that it shows only two arrows doing that!)
  • Why do the arrows cross over each other? (Tricky question — they wouldn’t cross over if you drew the arrows with negative input below the line instead of above.)
  • What does it say about the function that every arrowhead except two has two curves going into it?

Real Cographs

The cograph (Note [4] of a real function has an arrow from input to output just as the endograph does, but the graph represents the domain and codomain as their disjoint union. In this post the domain is a horizontal representation of the real line and the codomain is another such representation below the domain. You may also represent them in other configurations (Note [5]).

Here is the cograph representation of the function {y=x^2}. Compare it with the endograph representation above.

Besides the question of most arrows going to the right, you could also ask what is the envelope curve on the left.

More examples

Absolute value function

Arctangent function

Notes

[1] This website contains other notebooks you might find useful. They are in Mathematica .nb, .nbp, or .cdf formats, and can be read, evaluated and modified if you have Mathematica 8.0. They can also be made to appear in your browser with Wolfram CDF Player, downloadable free from Wolfram site. The CDF player allows you to operate any interactive demos contained in the file, but you can’t evaluate or modify the file without Mathematica.

The notebooks are mostly raw code with few comments. They are covered by the Creative Commons Attribution – ShareAlike 3.0 License, which means you may use, adapt and distribute the code following the requirements of the license. I am making the files available because I doubt that I will refine them into respectable CDF files any time soon.

[2] I call them “endographs” to avoid confusion with the usual graphs of functions — — drawings of (some of) the set of ordered pairs {x,f(x)} of the function.

[3] This is in contrast to a function defined on a discrete set, where the elements of the domain and codomain can be arranged in any old way. Then the significance of the resulting arrangement of the arrows lies entirely in which two dots they connect. Even then, some things can be seen immediately: Whether the function is a cycle, permutation, an involution, idempotent, and so on.

Of course, the placement of the arrows may tell you more if the finite sets are ordered in a natural way, as for example a function on the integers modulo some integer.

[4] The text [1] uses the cograph representation extensively. The word “cograph” is being used with its standard meaning in category theory. It is used by graph theorists with an entirely different meaning.

[5] It would also be possible to show the domain codomain in the usual {x-y} plane arrangement, with the domain the {x} axis and the codomain the {y} axis. I have not written the code for this yet.

References

[1] Sets for Mathematics, by F. William Lawvere and Robert Rosebrugh. Cambridge University Press, 2003.

[2] Martin Flashman’s website contains many exampls of cographs of functions, which he calls mapping diagrams.

Send to Kindle

Representations 2

Introduction

In a recent post I began a discussion of the mental, physical and mathematical representations of a mathematical object. The discussion continues here. Mathematicians, linguists, cognitive scientists and math educators have investigate some aspects of this topic, but there are many subtle connections between the different ideas which need to be studied.

I don’t have any overall theoretical grasp of these relationships. What I will do here is grope for an overall theory by mentioning a whole bunch of fine points. Some of these have been discussed in the literature and some (as far as I know) have not been discussed.  Many of them (I hope)  can be described as “an obvious fact about representations but no one has pointed it out before”.  Such fine points could be valuable; I think some scholars who have written about mathematical discourse and math in the classroom are not aware of many of these facts.

I am hoping that by thrashing around like this here (for graphs of functions) and for other concepts (set, function, triangle, number …) some theoretical understanding may emerge of what it means to understand math, do math, and talk about math.

The graph of a function

Let’s look at the graph of the function {y=x^3-x}.

What you are looking at is a physical representation of the graph of the function. The graph creates in your brain a mental representation of the graph of the function. These are subtly related to each other and to the mathematical definition of the graph.

Fine points

  1. The mathematical definition [2] of the graph of this function is: The set of ordered pairs of numbers {(x,x^3-x)} for all real numbers {x}.
  2. In the physical representation, each point {(x,x^3-x)} is shown in a location determined by the conventional {x-y} coordinate system, which uses a straight-line representation of the real numbers with labels and ticks.
    • The physical representation makes use of the fact that the function is continuous. It shows the graph as a curving line rather than a bunch of points.
    • The physical representation you are looking at is not the physical representation I am looking at. They are on different computer screens or pieces of paper. We both expect that the representations are very similar, in some sense physically isomorphic.
    • “Location” on the physical representation is a physical idea. The mathematical location on the mathematical graph is essentially the concept of the physical location refined as the accuracy goes to infinity. (This last statement is a metaphor attached to a genuine mathematical construction, for example Cauchy sequences.)
  3. The mathematical definition of “graph” and the physical representation are related by a metaphor. (See Note 1.)
    • The physical curve in blue in the picture corresponds via the metaphor to the graph in the mathematical sense: in this way, each location on the physical curve corresponds to an ordered pair of the form {(x,x^3-x)}.
    • The correspondence between the locations and the pairs is imperfect. You can’t measure with infinite accuracy.
    • The set of ordered pairs {(x,x^3-x)} form a parametrized curve in the mathematical sense. This curve has zero thickness. The curve in the physical representation has positive thickness.
    • Not all the points in the mathematical graph actually occur on the physical curve: The physical curve doesn’t show the left and right infinite tails.
    • The physical curve is drawn to show some salient characteristics of the curve, such as its extrema and inflection points. This is expected by convention in mathematical writing. If the graph had left out a maximum, for example, the author would be constrained (by convention!) to say so.
    • An experienced mathematician or advanced student understands the fine points just listed. A newbie may not, and may draw false conclusions about the function from the graph. (Note 2.)
  4. If you are a mathematician or at least a math student, seeing the physical graph shown above produces a mental image(see Note 3.) of the graph in your mind.
  5. The mathematical definition and the mental image are connected by a metaphor. This is not the same metaphor as the one that connects the physical representation and the mathematical definition.
    • The curve I visualize in my mental representation has an S shape and so does the physical representation. Or does it? Isn’t the S-ness of the shape a fact I construct mentally (without consciously intending to do so!)?
    • Does the curve in the mental rep have thickness? I am not sure this is a meaningful question. However, if you are a sufficiently sophisticated mathematician, your mental image is annotated with the fact that the curve has zero thickness. (See Note 4.)
    • The curve in your mental image of the curve may very well be blue (just because you just looked at my picture) but you must have an annotation to the effect that that is irrelevant! That is the essence of metaphor: Some things are identified with each other and others are emphatically not identified.
    • The coordinate axes do exist in the physical representation and they don’t exist in the mathematical definition of the graph. Of course they are implied by the definition by the properties of the projection functions from a product. But what about your mental image of the graph? My own image does not show the axes, but I do “know” what the coordinates of some of the points are (for example, {(-1,0)}) and I “see” some points (the local maximum and the local minimum) whose coordinates I can figure out.

Notes

1. This is metaphor in the sense lately used by cognitive scientists, for example in [6]. A metaphor can be described roughly as two mental images in which certain parts of one are identified with certain parts of another, in other words a pushout. The rhetorical use of the word “metaphor” requires it to be a figure of speech expressed in a certain way (the identification is direct rather than expressed by “is like” or some such thing.)  In my use in this article a metaphor is something that occurs in your brain.  The form it takes in speech or writing is not relevant.

2. I have noticed, for example, that some students don’t really understand that the left and right tails go off to infinity horizontally as well as vertically.   In fact, the picture above could mislead someone into thinking the curve has vertical asymptotes: The right tail looks like it goes straight up.  How could it get to x equals a billion if it goes straight up?

3. The “mental image” is of course a physical structure in your brain.  So mental representations are physical representations.

4. I presume this “annotation” is some kind of physical connection between neurons or something.  It is clear that a “mental image” is some sort of physical construction or event in the brain, but from what little I know about cognitive science, the scientists themselves are still arguing about the form of the construction.  I would appreciate more information on this. (If the physical representation of mental images is indeed still controversial, this says nothing bad about cognitive science, which is very new.)

References

[1] Mental Representations in Math (previous post).

[2] Definitions (in abstractmath).

[3] Lakoff, G. and R. E. Núñez (2000), Where Mathematics Comes From. Basic Books.

Send to Kindle

The Mathematical Definition of Function

Introduction

This post is a completely rewritten version of the abstractmath article on the definition of function. Like every part of abstractmath, the chapter on functions is designed to get you started thinking about functions. It is no way complete. Wikipedia has much more complete coverage of mathematical functions, but be aware that the coverage is scattered over many articles.

The concept of function in mathematics is as important as any mathematical idea. The mathematician’s concept of function includes the kinds of functions you studied in calculus but is much more abstract and general. If you are new to abstract math you need to know:

  • The precise meaning of the word “function” and other concepts associated with functions. That’s what this section is about.
  • Notation and terminology for functions. (That will be a separate section of abstractmath.org which I will post soon.)
  • The many different kinds of functions there are. (See Examples of Functions in abmath).
  • The many ways mathematicians think about functions. The abmath article Images and Metaphors for Functions is a stub for this.

I will use two running examples throughout this discussion:

  • {F} is the function defined on the set {\left\{1,\,2,3,6 \right\}} as follows: {F(1)=3,\,\,\,F(2)=3,\,\,\,F(3)=2,\,\,\,F(6)=1}. This is a function defined on a finite set by explicitly naming each value.
  • {G} is the real-valued function defined by the formula {G(x)={{x}^{2}}+2x+5}.

Specification of function

We start by giving a specification of “function”. (See the abstractmath article on specification.) After that, we get into the technicalities of the definitions of the general concept of function.

Specification: A function {f} is a mathematical object which determines and is completely determined bythe following data:

  • {f} has a domain, which is a set. The domain may be denoted by {\text{dom }f}.
  • {f} has a codomain, which is also a set and may be denoted by {\text{cod }f}.
  • For each element {a} of the domain of {f}, {f} has a value at {a}, denoted by {f(a)}.
  • The value of {f} at {a} is completely determined by {a} and {f} .
  • The value of {f} at {a} must be an element of the codomain of {f}.

The operation of finding {f(a)} given {f} and {a} is called evaluation.

Examples

  • The definition above of the finite function {F} specifies that the domain is the set {\left\{1,\,2,\,3,\,6 \right\}}. The value of {F} at each element of the domain is given explicitly. The value at 3, for example, is 2, because the definition says that {F(2) = 3}. The codomain of {F} is not specified, but must include the set {\{1,2,3\}}.
  • The definition of {G} above gives the value at each element of the domain by a formula. The value at 3, for example, is {G(3)=3^2+2\cdot3+5=20}. The definition does not specify the domain or the codomain. The convention in the case of functions defined on the real numbers by a formula is to take the domain to be all real numbers at which the formula is defined. In this case, that is every real number, so the domain is {{\mathbb R}}. The codomain must include all real numbers greater than or equal to 4. (Why?)

Comment: The formula above that defines the function G in fact defines a function of complex numbers (even quaternions).

Definition of function

In the nineteenth century, mathematicians realized that it was necessary for some purposes (particularly harmonic analysis) to give a mathematical definition of the concept of function. A stricter version of this definition turned out to be necessary in algebraic topology and other fields, and that is the one I give here.

To state this definition we need a preliminary idea.

The functional property

A set R of ordered pairs has the functional property if two pairs in R with the same first coordinate have to have the same second coordinate (which means they are the same pair).

Examples

  • The set {\{(1,2), (2,4), (3,2), (5,8)\}} has the functional property, since no two different pairs have the same first coordinate. It is true that two of them have the same second coordinate, but that is irrelevant.
  • The set {\{(1,2), (2,4), (3,2), (2,8)\}} does not have the functional property. There are two different pairs with first coordinate 2.
  • The graphs of functions in beginning calculus have the functional property.
  • The empty set {\emptyset} has the functional property .

Example: Graph of a function defined by a formula

The graph of the function {G} given above has the functional property. The graph is the set

\displaystyle \left\{ (x,{{x}^{2}}+2x+5)\,\mathsf{|}\,x\in {\mathbb R} \right\}.

If you repeatedly plug in one real number over and over, you get out the same real number every time. Example:

  • if {x = 0}, then {{{x}^{2}}+2x+5=5}.  You get 5 every time you plug in 0.
  • if {x = 1}, then {{{x}^{2}}+2x+5=8}.
  • if {x =-2}, then {{{x}^{2}}+2x+5=5}.

This set has the functional property because if {x} is any real number, the formula {{{x}^{2}}+2x+5} defines a specific real number. (This description of the graph implicitly assumes that {\text{dom } G={\mathbb R}}.)  No other pair whose first coordinate is {-2} is in the graph of {G}, only {(-2, 5)}. That is because when you plug {-2} into the formula {{{x}^{2}}+2x+5}, you get {5} every time. Of course, {(0, 5)} is in the graph, but that does not contradict the functional property. {(0, 5)} and {(-2, 5)} have the same second coordinate, but that is OK.

How to think about the functional property

The point of the functional property is that for any pair in the set of ordered pairs, the first coordinate determines what the second one is. That’s why you can write “{G(x)}” for any {x } in the domain of {G} and not be ambiguous.

Mathematical definition of function

A function{f} is a mathematical structure consisting of the following objects:

  • A set called the domain of {f}, denoted by {\text{dom } f}.
  • A set called the codomain of {f}, denoted by {\text{cod } f}.
  • A set of ordered pairs called the graph of { f}, with the following properties:
    • {\text{dom } f} is the set of all first coordinates of pairs in the graph of {f}.
    • Every second coordinate of a pair in the graph of {f} is in {\text{cod } f} (but {\text{cod } f} may contain other elements).
    • The graph of {f} has the functional property. Using arrow notation, this implies that {f:A\rightarrow B}.

Examples

  • Let {F} have graph {\{(1,2), (2,4), (3,2), (5,8)\}} and define {A = \{1, 2, 3, 5\}} and {B = \{2, 4, 8\}}. Then {F:A\rightarrow B} is a function.
  • Let {G} have graph {\{(1,2), (2,4), (3,2), (5,8)\}} (same as above), and define {A = \{1, 2, 3, 5\}} and {C = \{2, 4, 8, 9, 11, \pi, 3/2\}}. Then {G:A\rightarrow C} is a (admittedly ridiculous) function. Note that all the second coordinates of the graph are in {C}, along with a bunch of miscellaneous suspicious characters that are not second coordinates of pairs in the graph.
  • Let {H} have graph {\{(1,2), (2,4), (3,2), (5,8)\}}. Then {H:A\rightarrow {\mathbb R}} is a function.

According to the definition of function, {F}, {G} and {H} are three different functions.

Identity and inclusion

Suppose we have two sets A and B with {A\subseteq B}.

  • The identity function on A is the function {{{\text{id}}_{A}}:A\rightarrow A} defined by {{{\text{id}}_{A}}(x)=x} for all{x\in A}. (Many authors call it {{{1}_{A}}}).
  • The inclusion function from A to B is the function {i:A\rightarrow B} defined by {i(x)=x} for all {x\in A}. Note that there is a different function for each pair of sets A and B for which {A\subseteq B}. Some authors call it {{{i}_{A,\,B}}} or {\text{in}{{\text{c}}_{A,\,B}}}.

Remark The identity function and an inclusion function for the same set A have exactly the same graph, namely {\left\{ (a,a)|a\in A \right\}}.

Graphs and functions

  • If {f} is a function, the domain of {f} is the set of first coordinates of all the pairs in {f}.
  • If {x\in \text{dom } f}, then {f(x)} is the second coordinate of the only ordered pair in {f} whose first coordinate is {x}.

Examples

The set {\{(1,2), (2,4), (3,2), (5,8)\}} has the functional property, so it is the graph of a function. Call the function {H}. Then its domain is {\{1,2,3,5\}} and {H(1) = 2} and {H(2) = 4}. {H(4)} is not defined because there is no ordered pair in H beginning with {4} (hence {4} is not in {\text{dom } H}.)

I showed above that the graph of the function {G}, ordinarily described as “the function {G(x)={{x}^{2}}+2x+5}”, has the functional property. The specification of function requires that we say what the domain is and what the value is at each point. These two facts are determined by the graph.

Other definitions of function

Because of the examples above, many authors define a function as a graph with the functional property. Now, the graph of a function {G} may be denoted by {\Gamma(G)}.  This is an older, less strict definition of function that doesn’t work correctly with the concepts of algebraic topology, category theory, and some other branches of mathematics.

For this less strict definition of function, {G=\Gamma(G)}, which causes a clash of our mental images of “graph” and “function”. In every important way except the less-strict definition, they ARE different!

A definition is a device for making the meaning of math technical terms precise. When a mathematician think of “function” they think of many aspects of functions, such as a map of one shape into another, a graph in the real plane, a computational process, a renaming, and so on. One of the ways of thinking of a function is to think about its graph. That happens to be the best way to define the concept of function.  (It is the less strict definition and it is a necessary concept in the modern definition given here.)

The occurrence of the graph in either definition doesn’t make thinking of a function in terms of its graph the most important way of visualizing  it. I don’t think it is even in the top three.

Send to Kindle

Knowledge is a (pre)sheaf

Mathematical structures as metaphors

People understand aspects of life that they don’t have good words for. Math could supply them with some names for these concepts. Just as music theory explains how Mozart’s music, blues, and klezmer music are different from each other (part of the explanation is: different scales).

It would be convenient if everyone understood comments such as “Race and ethnicity are not Boolean concepts”. Well, they don’t. In the case of race, I think many people over 70 years old or so are hung up on the idea that a person is either black or white. They ask questions about a mixed race person like “What is he?” Younger people seem to know better, but they don’t have a way of expressing the idea that the concepts of Boolean and fuzzy set would give them. In a similar way, ethnicity is a function of (at least) two independent variables: ancestry and culture. Many people understand this without having a decent way to say it. But who outside of mathematicians knows from independent variables?

The Theory of Everything is a sheaf of theories

Reading The Grand Design, by Stephen Hawking and Leonard Mlodinow, led me to the idea that knowledge, at least scientific knowledge, is like a sheaf. Astronomy, biology, chemistry and physics are different systems of knowledge. In some sense Newton discovered a map that interpreted astronomy in physics, Linus Pauling did something like that with chemistry and physics (calculating chemical reactions using quantum mechanics), and Crick and Watson got hold of a basic fact that interprets biology in chemistry.

Now physicists are worried because (in terms of the metaphors of sheaves) physics seems to consist of two theories, quantum mechanics and large-scale physics, that may be different open sets in a sheaf that doesn’t have a global element, and possibly even worse, the restriction maps to their intersection may not be compatible. In other words, it not only doesn’t have a global element but it may be only a presheaf!

Now that will not sit well with scientists. Ordinary people go through life having different theories about love, religion, politics, when you kick a table it hurts your foot, and so on, and don’t seem to worry a bit about whether the restriction maps are compatible. Many scientists seem to me to believe that all the restriction maps are compatible, but we don’t know the details yet. And many of them want to throw out whole theories (astrology, ESP, and lately religion) because they can’t think how the restriction maps could be compatible.

There is evidence that the scientists are right: more and more overlaps between different theories have been shown compatible over the years. All different experiences can be connected by one sheaf of theories. That feeling is base on historical experience, but also it is intrinsic to the scientific method to assume that you can reconcile different aspects of whatever you are studying. It isn’t a matter solely of faith that there is one Theory (sheaf) of Everything; it is a matter of methodology. That knowledge forms a sheaf, not just a presheaf is the claim that all knowledge is compatible. That there may not be a global element, one Theory of Everything, is a separate idea and one that Hawking & Mlodinow seem to hint at. It is certainly worth considering the possibility that there is no global element in the Universal Sheaf of Theories.

Send to Kindle

Presenting math on the web

This is a long post about ways to present math on the web, in the context of what I have done with The Handbook of Mathematical Discourse and abstractmath.org (Abmath).  “Ways to present math” include both organization and production technology.

The post is motivated by and focused on my plans to reconstruct Abmath this fall, when I will not be teaching.    During the last couple of years I have experimented with several possibilities for the reconstruction (while doing precious little on the actual website) and have come to a tentative conclusion about how I will do it.  I am laying all this out here, past history and future plans, in the hope that readers will have suggestions that will help the process (or change my mind).

I set out to write both the Handbook and Abmath using ideas about how math should be presented on the web.  They came out differently.  Now I think I went wrong with some of the ways in which I organized Abmath and that I need to reconstruct it so that it is more like the Handbook.  On the other hand, I have decided to stick with the production method I used for Abmath. I will explain.

Organization

My concept for both these works was that they  would have these properties:

1) Each work would be a cloud of articles. They would have little or no hierarchy.  They would consist of lots of short articles, not organized into chapters, sections and subsections.

2) The articles would be densely hyperlinked with each other and with the rest of the web. The reader would use the links to move from article to article. The articles might occur in alphabetical order in the production file but to the reader the order would be irrelevant.

I wanted the works to be organized that way because that is what I wanted from an information-presenting website.  I want it that way because I am a grasshopper. Wikipedia and n-lab are each organized as a cloud of articles. I started writing the Handbook in the late nineties before Wikipedia began.

The Handbook exists in two forms. The web version is a hypertext PDF file that consists of short articles with extensive interlinking. The printed book has the same short articles arranged in alphabetical order. In the book form, the links are replaced by page indices (“paper hyperlinks”). In both forms some links are arranged as lists  of related topics.

Abstractmath.org is a large, interlinked collection of html pages.  They are organized in four large sections with many subsections.

Many entrances

For this cloud of articles arrangement to work, there must be many entrances into the website, so that a reader can find what they want. The Handbook has a list of entries in alphabetical order. Certain entries (for example the entries on attitudes, on behaviors, and on multiple meanings) have internal lists of links to examples of what that entry discusses.  In addition, the paper version has an index that (in theory) provides links to all important occurrences of each concept in the book.  This index is not included in the current hypertext version, although the LaTeX package hyperref would make it possible to include it.  On the other hand, the hypertext version has the PDF search capability.

Abmath has a table of contents, listing articles in hierarchical form, as well as an index, which is different from the Handbook index in that it gives only one link from each word or phrase. In addition, it has header sections that briefly describe the contents of each main section and (in some cases) subsection, and also a Diagnostic Examples section (currently fragmentary)in which each entry provides a description of a particular problem that someone may have in understanding abstract math, with links to where it is discussed. The website currently has no search capability.

The Handbook is really a cloud of articles, and Abmath is not. I made a serious mistake imposing a hierarchy on Abmath, and that is the main thing I want to correct when I reconstruct it.  Basically, I want to dissolve the hierarchy into a cloud of articles.

Production methods

The Handbook was composed using LaTeX.  It originally existed in hypertext form (in a PDF file) and lived on the web for several years, generating many useful suggestions. I wrote a LaTeX header that could be set to produce PDF output with hyperlinks or PDF output formatted as a book with paper hyperlinks; that form was eventually published as a book.

I used a number of Awk programs to gather the various kinds of links.  For example, every entry referring to a math word that has multiple meanings was marked and an Awk program gathered them into a list of links.

I generated the html pages for Abmath using Microsoft Word and MathType.  MathType is very easy to use and has the capability (recently acquired) of converting all math entries that it generated  into TeX. The method used for Abmath has several defects.  You can’t apply Awk (or nowadays Python) programs to a Word document since it is in a proprietary format.  Another problem is that the appearance of the result varies with browser.

But the Abmath method also has advantages.  It produces html documents which can be read in windows that you can make narrower or wider and the text will adjust.  PDF files are fixed width and rigid, and I find clicking on links requires you to be annoyingly precise with your fingers.

So my original thought was to go back to LaTeX for the new version of Abmath. There are several ways to produce html files from LaTeX, and converting the MathType entries to TeX provides a big headstart on converting the Word files into text files.  Then I could use Awk to do a lot of bookkeeping and cut the hyperlink errors, the way I did with the Handbook.

So at first I was quite nostalgic about the wonderful time I had doing the Handbook in LaTeX — until I remembered all the fussing I did to include illustrations and marginal remarks. (I couldn’t just put the illo there and leave it.) Until I remembered how slowly the resulting PDF file loads because there seems to be no way to break it into individual article files without breaking the links.

And then I found that (as far as I could determine) there is no HTMLTeX that produces a reasonable HTML file from any TeX file the way PDFTeX produces a PDF file from any TeX file, using Knuth’s  TeX program. In fact all the TeX to HTML systems I investigated don’t use Knuth’s program at all — they just have code in some programming language that reads a TeX file and interprets what the programmer felt like interpreting.  I would love to be contradicted concerning this.

So now my thought is to stick with Word and MathType.  And to do textual manipulation I will have to learn Word Basic.  I just ordered two books on Word Basic. I would rather learn Python, but I have to work with what I have already done.  Stay tuned.

Send to Kindle

Function as map

This is a first draft of an article to eventually appear in abstractmath.

Images and metaphors

To explain a math concept, you need to explain how mathematicians think about the concept. This is what in abstractmath I call the images and metaphors carried by the concept. Of course you have to give the precise definition of the concept and basic theorems about it. But without the images and metaphors most students, not to mention mathematicians from a different field, will find it hard to prove much more than some immediate consequences of the definition. Nor will they have much sense of the place of the concept in math and applications.

Teachers will often explain the images and metaphors with handwaving and pictures in a fairly vague way. That is good to start with, but it’s important to get more precise about the images and metaphors. That’s because images and metaphors are often not quite a good fit for the concept — they may suggest things that are false and not suggest things that are true. For example, if a set is a container, why isn’t the element-of relation transitive? (A coin in a coinpurse in your pocket is a coin in your pocket.)

“A metaphor is a useful way to think about something, but it is not the same thing as the same thing.” (I think I stole that from the Economist.) Here, I am going to get precise with the notion that a function is a map. I am acting like a mathematician in “getting precise”, but I am getting precise about a metaphor, not about a mathematical object.

A function is a map

A map (ordinary paper map) of Minnesota has the property that each point on the paper represents a point in the state of Minnesota. This map can be represented as a mathematical function from a subset of a 2-sphere to {{\mathbb R}^2}. The function is a mathematical idealization of the relation between the state and the piece of paper, analogous to the mathematical description of the flight of a rocket ship as a function from {{\mathbb R}} to {{\mathbb R}^3}.

The Minnesota map-as-function is probably continuous and differentiable, and as is well known it can be angle preserving or area preserving but not both.

So you can say there is a point on the paper that represents the location of the statue of Paul Bunyan in Bemidji. There is a set of points that represents the part of the Mississippi River that lies in Minnesota. And so on.

A function has an image. If you think about it you will realize that the image is just a certain portion of the piece of paper. Knowing that a particular point on the paper is in the image of the function is not the information contained in what we call “this map of Minnesota”.

This yields what I consider a basic insight about function-as-map:  The map contains the information about the preimage of each point on the paper map. So:

The map in the sense of a “map of Minnesota” is represented by the whole function, not merely by the image.

I think that is the essence of the metaphor that a function is a map. And I don’t think newbies in abstractmath always understand that relationship.

A morphism is a map

The preceding discussion doesn’t really represent how we think of a paper map of Minnesota. We don’t think in terms of points at all. What we see are marks on the map showing where some particular things are. If it is a road map it has marks showing a lot of roads, a lot of towns, and maybe county boundaries. If it is a topographical map it will show level curves showing elevation. So a paper map of a state should be represented by a structure preserving map, a morphism. Road maps preserve some structure, topographical maps preserve other structure.

The things we call “maps” in math are usually morphisms. For example, you could say that every simple closed curve in the plane is an equivalence class of maps from the unit circle to the plane. Here equivalence class meaning forget the parametrization.

The very fact that I have to mention forgetting the parametrization is that the commonest mathematical way to talk about morphisms is as point-to-point maps with certain properties. But we think about a simple closed curve in the plane as just a distorted circle. The point-to-point correspondence doesn’t matter. So this example is really talking about a morphism as a shape-preserving map. Mathematicians introduced points into talking about preserving shapes in the nineteenth century and we are so used to doing that that we think we have to have points for all maps.

Not that points aren’t useful. But I am analyzing the metaphor here, not the technical side of the math.

Groups are functors

People who don’t do category theory think the idea of a mathematical structure as a functor is weird. From the point of view of the preceding discussion, a particular group is a functor from the generic group to some category. (The target category is Set if the group is discrete, Top if it is a topological group, and so on.)

The generic group is a group in a category called its theory or sketch that is just big enough to let it be a group. If the theory is the category with finite products that is just big enough then it is the Lawvere theory of the group. If it is a topos that is just big enough then it is the classifying topos of groups. The theory in this sense is equivalent to some theory in the sense of string-based logic, for example the signature-with-axioms (equational theory) or the first order theory of groups. Johnstone’s Elephant book is the best place to find the translation between these ideas.

A particular group is represented by a finite-limit-preserving functor on the algebraic theory, or by a logical functor on the classifying topos, and so on; constructions which bring with them the right concept of group homomorphisms as well (they will be any natural transformations).

The way we talk about groups mimics the way we talk about maps. We look at the symmetric group on five letters and say its multiplication is noncommutative. “Its multiplication” tells us that when we talk about this group we are talking about the functor, not just the values of the functor on objects. We use the same symbols of juxtaposition for multiplication in any group, “{1}” or “{e}” for the identity, “{a^{-1}}” for the inverse of {a}, and so on. That is because we are really talking about the multiplication, identity and inverse function in the generic group — they really are the same for all groups. That is because a group is not its underlying set, it is a functor. Just like the map of Minnesota “is” the whole function from the state to the paper, not just the image of the function.

Send to Kindle

Expository writing in the future

I have written a lot about math exposition in the past. [Note 1.] Lately I have been thinking about the effect of technological change on exposition.

Texting

A lot of commentators have complained that their students’ writing style has “deteriorated” because of texting, specifically their use of abbreviations and acronyms.

Last January I resumed teaching mathematics after an exactly ten year lapse. My students and I email a lot, post on message boards, hand in homework, write up tests. I have seen very few “lol”s and “cu”s and the like, mostly in emails and almost entirely from students whose native language is not English. (See Note 1.)

As far as I can see the students’ written language has not deteriorated. In fact I think native English speakers write better English than they did ten years ago. (But Minnesota has a considerably better educational system than Ohio.)

Besides, if lol and cu become part of the written language, so what? Many Old Fogies may find it jarring, but Old Fogies die and their descendants talk however they want to.

Bulleted lists

I have been using Powerpoint part of the time in teaching (I had already given some talks using it). People complain about that affecting our style, too. But I think that in particular bulleted and numbered lists are great. I wish people would use them more often. Consider this passage from a recent version of Thomas’ Calculus [1]:

\displaystyle  \int_a^bx\,dx=\dfrac{b^2}{2}-\dfrac{a^2}{2}\quad (a<  b)\quad\quad\quad(1)

This computation gives the area of a trapezoid. Equation (1) remains valid when {a} and {b} are negative. When {a<b<0}, the definite integral value … is a negative number, the negative of the area of the trapezoid dropping down to the line {y=x} below the {x}-axis. When {a<0} and {b>0}, Equation (1) is still valid and the definite integral gives the difference between two areas …

It would be much better to write something like this:

Equation (1) is valid for any {a} and {b}.

  • When {a} and {b} are positive, Equation (1) gives the area of a trapezoid.
  • When {a} and {b} are both negative, the result is negative and is the negative of the area…
  • When {a<0} and {b>0}, the result is the difference between two areas…

That is much easier to read than the first version, in which you have to parse through the paragraph detecting that it states parallel facts. That is not terribly difficult but it slows you down. Especially in this case where the sentences are not written in parallel and contain remarks about validity in scattered places when in fact the equation is valid for all cases.

This book does use numbered or lettered lists in many other places.

The future is upon us

Lots of lists and illustrations require more paper. This will go away soon. Some future edition of the book on an e-reader could contain this list of facts as a nicely spaced list, much easier to grasp, and could contain three graphs, with {a} and {b} respectively left of the {x}-axis, straddling it, and to the right of it. This will cost some preparation time but no paper and computer memory at the scale of a book is practically free.

I use bulleted lists a lot in abstractmath, as here. Abstractmath is intended to be read on the computer. It is not organized linearly and a paper copy would not be particularly useful.

By the way, since the last time I looked at this page all the bullets have been replaced with copyright signs. (In three different browsers!) Somebody’s been Messing With Me. AArgH.

The Irish mystery writer Ken Bruen regularly uses lists, without bullets or numbers. Look at page 3 of The Killing of the Tinkers.

Some people find bulleted lists jarring simply because they are new. I think some are academic snobs who diss anything that sounds like something a business person would do. See my remarks at the end of the section on texting.

Notes

1. You can see much of what I have said on this blog about exposition by reading the posts labeled “exposition” (scroll down to the list of categories in the left column.) See also Varieties of Mathematical Prose by Atish Bagchi and me.

2. Foreign language speakers also write things like “Hi Charles” instead of “Dear Professor Wells” or using no greeting at all (which is probably the best thing to do). Dealing with a foreign language requires familiarity with the local social structure and customs of address, of being aware of levels of the various formal and informal registers, and so on. When we lived in Switzerland, how was I to know that “Ciao” went with “du” and “wiederluege” went with “Sie”? (If I remember correctly. Ye Gods, that was 35 years ago.)

References

1. Thomas’ Calculus, Early Transcendentals, Eleventh Edition, Media Upgrade. Pearson Education, 2008.

Send to Kindle