Composites of functions

In my post on automatic spelling reform, I mentioned the various attempts at spelling reform that have resulted in both the old and new systems being used, which only makes things worse.  This happens in Christian denominations, too.  Someone (Martin Luther, John Wesley) tries to reform things; result: two denominations.   But a lot of the time the reform effort simply disappears.  The Chicago Tribune tried for years to get us to write “thru” and “tho” —  and failed.  Nynorsk (really a language reform rather than a spelling reform) is down to 18% of the population and the result of allowing Nynorsk forms to be used in the standard language have mostly been nil.  (See Note 1.)

In my early years as a mathematician I wrote a bunch of papers writing functions on the right (including the one mentioned in the last post).  I was inspired by some algebraists and particularly by Beck’s Thesis (available online via TAC), which I thought was exceptionally well-written.  This makes function composition read left to right and makes the pronunciation of commutative diagrams get along with notation, so when you see the diagram below you naturally write h = fg instead of h = gf. Composite

Sadly, I gave all that up before 1980 (I just looked at some of my old papers to check).  People kept complaining.  I even completely rewrote one long paper (Reference [3]) changing from right hand to left hand (just like Samoa).  I did this in Zürich when I had the gout, and I was happy to do it because it was very complicated and I had a chance to check for errors.

Well, I adapted.  I have learned to read the arrows backward (g then f in the diagram above).  Some French category theorists write the diagram backward, thus:

CompositeOp

But I was co-authoring books on category theory in those days and didn’t think people would accept it. Not to mention Mike Barr (not that he is not a people, oh, never mind).

Nevertheless, we should have gone the other way.  We should have adopted the Dvorak keyboard and Betamax, too.

Notes

[1] A lifelong Norwegian friend of ours said that when her children say “boka” instead of “boken” it sound like hillbilly talk does to Americans.  I kind of regretted this, since I grew up in north Georgia and have been a kind of hillbilly-wannabe (mostly because of the music); I don’t share that negative reaction to hillbillies.  On the other hand, you can fageddabout “ho” for “hun”.

References

[1] Charles Wells, Automorphisms of group extensions, Trans. Amer. Math. Soc, 155 (1970), 189-194.

[2] John Martino and Stewart Priddy, Group extensions and automorphism group rings. Homology, Homotopy and Applications 5 (2003), 53-70.

[3] Charles Wells, Wreath product decomposition of categories 1, Acta Sci. Math. Szeged 52 (1988), 307 – 319.

Send to Kindle

3 thoughts on “Composites of functions”

  1. Too bloody right. I’ve certainly spent a lot of time extricating myself from the confusions caused by the standard notation’s order-switch, and surely people who are actually good at math have also.

  2. NO! The foundation of communication isn’t logic but convention!

    And in a completely other direction, it makes one a stronger mathematician to be ready for *either* convention; I remember having the most difficult time trying to wrap my head around having both left and right group/ring/whatever actions on sets/modules/whatover, trying to figure out both why they were different things and why they were the same thing; but when I became used to different ways to read formulae, things started clicking together, and finally the opposite of a group made sense, hooray!

    That’s my twopence

Leave a Reply

Your email address will not be published. Required fields are marked *