Thinking about a function as a mathematical object

A mathematician’s mental representation of a function is generally quite rich and may involve many different metaphors and images kept in mind simultaneously. The abmath article on metaphors and images for functions discusses many of these representations, although the article is incomplete. This post is a fairly thorough rewrite of the discussion in that article of the representation of the concept of “function” as a mathematical object. You must think of functions as math objects when you are taking the rigorous view, which happens when you are trying to prove something about functions (or large classes of functions) in general.

What often happens is that you visualize one of your functions in many of the ways described in this article (it is a calculation, it maps one space to another, its graph is bounded, and so on) but those images can mislead you. So when you are completely stuck, you go back to thinking of the function as an axiomatically-defined mathe­matical structure of some sort that just sits there, like a complicated machine where you can see all the parts and how they relate to each other. That enables you to prove things by strict logical deduction. (Mathematicians mostly only go this far when they are desperate. We would much rather quote somebody’s theorem.) This is what I have called the dry bones approach.

The “mathematical structure” is most commonly a definition of function in terms of sets and axioms. The abmath article Specification and definition of “function” discusses the usual definitions of “function” in detail.

Example

This example is intended to raise your consciousness about the possibilities for functions as objects.

Consider the function $f:\mathbb{R}\to\mathbb{R}$ defined by $f(x)=2{{\sin }^{2}}x-1$. Its value can be computed at many different numbers but it is a single, static math object.

You can apply operators to it

  • Just as you can multiply a number by $2$, you can multiply $f$ by $2$.   You can say “Let $g(x)=2f(x)$” or “Let $g=2f$”. Multiplying a numerical function by $2$ is an operator that take the function $f$ to $2f$. Its input is a function and its output is another function. Then the value of $g$ (which is $2f$) at any real $x$ is $g(x)=2f(x)=4{{\sin }^{2}}x-2$. The notation  “$g=2f$” reveals that mathematicians think of $f$ as a single math object just as the $3$ in the expression “$2\times 3$” represents the number $3$ as a single object.
  • But you can’t do arithmetic operations to functions that don’t have numerical output, such as the function $\text{FL}$ that takes an English word to its first letter, so $\text{FL}(`\text{wolf’})=`\text{w’}$. (The quotes mean that I am writing about the word ‘wolf’ and the letter ‘w’.) The expression $2\times \text{FL}(`\text{wolf’})$ doesn’t make sense because ‘w’ is a letter, not a number.
  • You can find the derivative.  The derivative operator is a function from differentiable functions to functions. Such a thing is usually called an operator.  The derivative operator is sometimes written as $D$, so $Df$ is the function defined by: “$(Df)(x)$ is the slope of the tangent line to $f$ at the point $(x,f(x)$.” That is a perfectly good definition. In calculus class you learn formulas that allow you to calculate $(Df)(x)$ (usually called “$f'(x)$”) to be $4 \sin (x) \cos (x)$.

Like all math objects, functions may have properties

  • The function defined by $f(x)=2{{\sin}^{2}}x-1$ is differentiable, as noted above. It is also continuous.
  • But $f$ is not injective. This means that two different inputs can give the same output. For example,$f(\frac{\pi}{3})=f(\frac{4\pi}{3})=\frac{1}{2}$. This is a property of the whole function, not individual values. It makes no sense to say that $f(\frac{\pi}{3})$ is injective.
  • The function $f$ is periodic with period $2\pi$, meaning that for any $x$, $f(x+2\pi)=f(x)$.     It is the function itself that has period $2\pi$, not any particular value of it.  

As a math object, a function can be an element of a set

  • For example,$f$ is an element of the set ${{C}^{\infty }}(\mathbb{R})$ of real-valued functions that have derivatives of all orders.
  • On ${{C}^{\infty }}(\mathbb{R})$, differentiation is an operator that takes a function in that set to another function in the set.   It takes $f(x)$ to the function $4\sin x\cos x$.
  • If you restrict $f$ to the unit interval, it is an element of the function space ${{\text{L}}^{2}}[0,1]$.   As such it is convenient to think of it as a point in the space (the whole function is the point, not just values of it).    In this particular space, you can think of the points as vectors in an uncountably-infinite-dimensional space. (Ideas like that weird some people out. Do not worry if you are one of them. If you keep on doing math, function spaces will seem ordinary. They are OK by me, except that I think they come in entirely too many different kinds which I can never keep straight.) As a vector, $f$ has a norm, which you can think of as its length. The norm of $f$ is about $0.81$.

The discussion above shows many examples of thinking of a function as an object. You are thinking about it as an undivided whole, as a chunk, just as you think of the number $3$ (or $\pi$) as just a thing. You think the same way about your bicycle as a whole when you say, “I’ll ride my bike to the library”. But if the transmission jams, then you have to put it down on the grass and observe its individual pieces and their relation to each other (the chain came off a gear or whatever), in much the same way as noticing that the function $g(x)=x^3$ goes through the origin and looks kind of flat there, but at $(2,8)$ it is really rather steep. Phrases like “steep” and “goes through the origin” are a clue that you are thinking of the function as a curve that goes left to right and levels off in one place and goes up fast in another — you are thinking in a dynamic, not a static way like the dry bones of a math object.

Send to Kindle

Leave a Reply

Your email address will not be published. Required fields are marked *