I have been working on the abstractmath website for about four years now (with time off for three major operations). Much has been written, but there are still lots of stubs that need to be filled in. Also much of it needs editing for stylistic uniformity, and for filling in details and providing more examples in some hastily written sections that read like outlines. Not to mention correcting errors, which seem to multiply when I am not looking. The website consists of four main parts and some ancillary chapters. I will go into more detail about some of the parts in later articles.
The languages of math. This is a description of mathematical English and the symbolic language of math (which are two different languages!) with an emphasis on the problems they cause people new to abstract math (roughly, math after calculus). At this point, I have completed a fairly thorough edit of the whole chapter that makes it almost presentable. Start with the Introduction.
Proofs. Mathematical proofs are a central problem for abstract math newbies. People interested in abstract math must learn to read and understand proofs. A proof is narrated in mathematical English. A proof has a logical structure. The reader must extract the logical structure from the narrative form. The chapter on proofs gives examples of proofs and discusses the logical structure and its relationship with the narration. The introduction to the chapter on proofs tells more about it.
Understanding math. There are certain barriers to understanding math that are difficult to get over. Mathematicians, math educators and philosophers work on various aspects of these problems and this chapter draws on their work and my own observations as a mathematician and a teacher.
All true statements about a math object must follow from the definition. That sounds clear enough. But in fact there are subtleties about definitions teachers may not tell students about because they are not aware of them themselves. For example, a definition can really mislead you about how to think about a math object.
The section on math objects breaks new ground (in my opinion) about how to think about them. I also discuss representations and models and images and metaphors (which I think is especially important), and in shorter articles about other topics such as abstraction and pattern recognition.
Doing math. This chapter points out useful behaviors and dysfunctional behaviors in doing math, with concrete examples. Beginners need to be told that when proving an elementary theorem they need to rewrite what is to be proved according to the definitions. Were you ever told that? (If you went to a Jesuit high school, you probably were.) Beginners need to be told that they should not try the same computational trick over and over even though it doesn’t work. That they need to look at examples. That they need to zoom in and out, looking at a detail and then the big picture. We need someone to make movies illustrating these things.
These other articles are outside the main organization:
Topic articles. Sets, real numbers, functions, and so on. In each case I talk just a bit about the topic to get the newbie over the initial hump.
Diagnostic examples. Examples chosen to evoke a misunderstanding, with a link to where it is explained. This needs to be greatly expanded.
Attitudes. This explains my point of view in doing abstractmath.org. I expect to rewrite it.
Send to Kindle