Category Archives: language

Mathematical Information I

Introduction

The January, 2016 meeting of the American Mathematical Society in Seattle included a special session on Mathe­matical Information in the Digital Age of Science. Here is a link to the list of talks in that session (you have to scroll down a ways to get to the list).

Several talks at that session were about communi­cating math, to other mathe­maticians and to the general public. Well, that’s what I have been about for the last 20 years. Mostly.

Overview

These posts discuss the ways we communi­cate math and (mostly in later posts) the revolution in math communication that the internet has caused. Parts of this discussion were inspired by the special session talks. When they are relevant, I include footnotes referring to the talks. Be warned that what I say about these ideas may not be the same as what the speakers had to say, but I feel I ought to give them credit for getting me to think about those concepts.

Some caveats

  • The distinctions between different kinds of math communi­cation are inevitably fuzzy.
  • Not all kinds of communication are mentioned.
  • Several types of communication normally occur in the same document.

Articles published in journals

Until recently, math journals were always published on paper. Now many journals exist only on the internet. What follows is a survey of the types of articles published in journals.

Refereed papers containing new results

These communications typically containing proofs of (usually new) theorems. Such papers are the main way that academic mathematicians get credit for their researchG for the purpose of getting tenure (at least in the USA), although some other types of credit are noted below.

Proofs published in refereed journals in the past were generally restricted to formal proofs, without very many comments intended to aid the reader’s under­standing. This restricted text was often enforced by the journal. In the olden days this would have been prompted by the expense of publishing on paper. I am not sure how much this restriction has relaxed in electronic journals.

I have been writing articles for abstractmath.org and Gyre&Gimble for many years, and it has taken me a very long time to get over unnecessarily restricting the space I use in what I write. If I introduce a diagram in an article and then want to refer to it later, I don’t have to link to it — I can copy it into the current location. If it makes sense for an informative paragraph to occur in two different articles, I can put it into both articles. And so on. Nowadays, that sort of thing doesn’t cost anything.

Survey articles and invited addresses

You may also get credit for an invited address to a prestigious organi­zation, or for a survey of your field, in for example the Bulletin of the AMS. Invited addresses and surveys may contain considerably more explanatory asides. This was quite noticeable in the invited talks at the AMS Seattle meeting.

Books

There is a whole spectrum of math books. The following list mentions some Fraunhofer lines on the spectrum, but the gamut really is as continuous as a large finite list of books could be. This list needs more examples. (This is a blog post, so it has the status of an alpha release.)

Research books that are concise and without much explanation.

The Bourbaki books that I have dipped into (mostly the algebra book and mostly in the 1970’s) are definitely concise and seem to strictly avoid explanation, diagrams, pictures, etc). I have heard people say they are unreadable, but I have not found them so.

Contain helpful explanations that will make sense to people in the field but probably would be formidable to someone in a substantially different area.

Toposes, triples and theories, by Michael Barr and Charles Wells. I am placing our book here in the spectrum because several non-category-theorists (some of them computer scientists) have remarked that it is “formidable” or other words like that.

Intended to introduce professional mathematicians to a particular field.

Categories for the working mathematician, by Saunders Mac Lane. I learned from this (the 1971 edition) in my early days as a category theorist, six years after getting my Ph.D. In fact, I think that this book belongs to the grad student level instead of here, but I have not heard any comments one way or another.

Intended to introduce math graduate students to a particular field.

There are lots of examples of good books in this area. Years ago (but well after I got my Ph.D.), I found Serge Lang’s Algebra quite useful and studied parts of it in detail.

But for grad students? It is still used for grad students, but perhaps Nathan Jacobson’s Basic Algebra would be a better choice for a first course in algebra for first-year grad students.

The post My early life as a mathematician discusses algebra texts in the olden days, among other things.

Intended to explain a part of math to a general audience.

Love and math: the heart of hidden reality. by Edward Frenkel, 2014. This is a wonderful book. After reading it, I felt that at last I had some clue as to what was going on with the Langlands Program. He assumes that the reader knows very little about math and gives hand-waving pictorial expla­nations for some of the ideas. Many of the concepts in the book were already familiar to me (not at an expert level). I doubt that someone who had had no college math courses that included some abstract math would get much out of it.

Symmetry: A Journey into the Patterns of Nature, by Marcus du Sautoy, 2009. He also produced a video on symmetry.

My post Explaining “higher” math to beginners, describes du Sautoy’s use of terminology (among others).

Secrets of creation: the mystery of the prime numbers (Volume 1) by Matthew Watkins (author) and Matt Tweed (Illustrator), 2015. This is the first book of a trilogy that explains the connection between the Riemann $\zeta$ function and the primes. He uses pictures and verbal descriptions, very little terminology or symbolic notation. This is the best attempt I know of at explaining deep math that might really work for non-mathe­maticians.

My post The mystery of the prime numbers: a review describes the first book.

Piper Harron’s Thesis

The Equidistribution of Lattice Shapes of Rings of Integers of Cubic, Quartic, and Quintic Number Fields: an Artist’s Rendering, Ph.D. thesis by Piper Harron.

This is a remarkable departure from the usual dry, condensed, no-useful-asides Ph.D. thesis in math. Each chapter has three main parts, Layscape (explanations for nonspecialists — not (in my opinion) for nonmathe­maticians), Mathscape (most like what goes into the usual math paper but with much more explanation) and Weedscape (irrelevant stuff which she found helpful and perhaps the reader will too). The names of these three sections vary from chapter to chapter. This seems like a great idea, and the parts I have read are well-done.

These blog posts have useful comments about her thesis:

Types of explanations

Any explanation of math in any of the categories above will be of several different types. Some of them are considered here, and more will appear in Mathematical Information II.

The paper Varieties of Mathematical Prose, by Atish Bagchi and me, provides a more fine-grained description of certain types of math communication that includes some types of explanations and also other types of communication.

Images and metaphors

In abstractmath.org

I have written about images and metaphors in abstractmath.org:

Abstractmath.org is aimed at helping students who are beginning their study of abstract math, and so the examples are mostly simple and not at a high level of abstraction. In the general literature, the images and metaphors that are written about may be much more sophisticated.

The User’s GuideW

Luke Wolcott edits a new journal called Enchiridion: Mathematics User’s Guides (this link allows you to download the articles in the first issue). Each article in this journal is written by a mathematician who has published a research paper in a refereed journal. The author’s article in Enchiridion provides information intended to help the reader to understand the research paper. Enchiridion and its rationale is described in more detail in the paper The User’s Guide Project: Giving Experential Context to Research Papers.

The guidelines for writing a User’s Guide suggest writing them in four parts, and one of the parts is to introduce useful images and metaphors that helped the author. You can see how the authors’ user’s guides carry this out in the first issue of Enchiridion.

Piper Harron’s thesis

Piper Harron’s explanation of integrals in her thesis is a description of integrals and measures using creative metaphors that I think may raise some mathematicians’ consciousness and others’ hackles, but I doubt it would be informative to a non-mathematician. I love “funky-summing” (p. 116ff): it communicates how integration is related to real adding up a finite bunch of numbers in a liberal-artsy way, in other words via the connotations of the word “funky”, in contrast to rigorous math which depends on every word have an accumulation-of-properties definition.

The point about “funky-summing” (in my opinion, not necessarily Harron’s) is that when you take the limit of all the Riemann sums as all meshes go to zero, you get a number which

  • Is really and truly not a sum of numbers in any way
  • Smells like a sum of numbers

Connotations communicate metaphors. Metaphors are a major cause of grief for students beginning abstract math, but they are necessary for understanding math. Working around this paradox is probably the most important problem for math teachers.

Informal summaries of a proofW

The User’s Guide requires a “colloquial summary” of a paper as one of the four parts of the guide for that paper.

  • Wolcott’s colloquial summary of his paper keeps the level aimed at non-mathematicians, starting with a hand-waving explanation of what a ring is. He uses many metaphors in the process of explaining what his paper does.
  • The colloquial summary of another User’s Guide, by Cary Malkiewich, stays strictly at the general-public level. He uses a few metaphors. I liked his explanation of how mathematicians work first with examples, then finding patterns among the examples.
  • The colloquial summary of David White’s paper stays at the general-public level but uses some neat metaphors. He also has a perceptive paragraph discussing the role of category theory in math.

The summaries I just mentioned are interesting to read. But I wonder if informal summaries aimed at math majors or early grad students might be more useful.

Insights

The first of the four parts of the explanatory papers in Enchiridion is supposed to present the key insights and organizing principles that were useful in coming up with the proofs. Some of them do a good job with this. They are mostly very special to the work in question, but some are more general.

This suggests that when teaching a course in some math subject you make a point of explaining the basic techniques that have turned out very useful in the subject.

For example, a fundamental insight in group theory is:

Study the linear representations of a group.

That is an excellent example of a fundamental insight that applies everywhere in math:

Find a functor that maps the math objects you are studying to objects in a different branch of math.

The organizing principles listed in David White’s article has (naturally more specialized) insights like that.

Proof stories

“Proof stories” tell in sequence (more or less) how the author came up with a proof. This means describing the false starts, insights and how they came about. Piper Harron’s thesis does that all through her work.

Some authors do more than that: their proof stories intertwine the mathe­matical events of their progress with a recount of life events, which sometimes make a mathe­matical difference and sometimes just produces a pause to let the proof stew in their brain. Luke Wolcott wrote a User’s Guide for one of his own papers, and his proof story for that paper involves personal experiences. (I recommend his User’s Guide as a model to learn from.)

Reports of personal experiences in doing math seem to add to my grasp of the math, but I am not sure I understand why.

References

The talks in Seattle

  • List of all the talks.
  • W. Timothy Gowers, How should mathe­matical knowledge be organized? Talk at the AMS Special Session on Mathe­matical Information in the Digital Age of Science, 6 January 2016.
  • Colloquium notes. Gowers gave a series of invited addresses for which these are the notes. They have many instances of describing what sorts of problems obstruct a desirable step in the proof and what can be done about it.

  • Luke Wolcott, The User’s Guide. Talk at the AMS Special Session on Mathe­matical Information in the Digital Age of Science, 6 January 2016.

Creative Commons License< ![endif]>

This work is licensed under a Creative Commons Attribution-ShareAlike 2.5 License.

Send to Kindle

Names of mathematical objects

This is a revision of the abstractmath.org article on names.

The name of a mathematical object is a word or phrase in math English used to identify an object. A name plays the same role that symbolic terms play in the symbolic language.

Sources of names


Suggestive English words

A suggestive name is a a common English word or phrase, chosen to suggest its meaning. This means it is a type of metaphor.

Examples


In none of these examples is
the metaphorical meaning
exactly suitable to be
the mathe­matical definition.

  • “Curve”, “point”, “line”, “slope“, “circle” and many other English words are used in elementary math with precise meanings that more or less fit their everyday meanings.
  • Connected subspace (of a topological space). When you draw a picture of a connected set it looks “connected”.
  • “Set” suggests a collection of things and provides a reasonable metaphor for its mathe­matical meaning. Both the abstractmath article on sets and the Wikipedia article on sets give you insight on why this metaphor cannot be entirely accurate.
  • Random English words

    Most English words used in math are not suggestive. They are either chosen at random or were intended to suggest something but misfired in some way.

    Groups

    A group is a collection of math objects with a binary operation defined on it subject to certain constraints. The binary operation is much more impor­tant than the underlying set! To many non-mathe­maticians, a “group” sounds like essentially what a mathe­matician calls a “set”.

    The concept of group was one of the earliest mathe­matical concepts des­cribed as a set-with-structure. I believe that a group was origi­nally referred to as a “group of trans­forma­tions”. May­be that phrase got shortened to “group” without anyone realizing what a disas­trous met­a­phor it caused.

    Fields

    A field in the algebraic sense is a structure which is not in any way suggested by the word “field”. The German word for field in this sense is “Körper”, which means “body”. That is about as bad as “group”, and I suspect it was motivated in much the same way. The name “Körper” may be due to Dedekind. I don’t know who to blame for “field”.

    A field in the sense of an assignment of a scalar or a vector to every point in a space is a completely separate notion than that of field as an algebra. The concept was invented in the nineteenth century by physicists, but any math student is likely to see fields in this sense in several different courses.

    Perhaps the second meaning of field was suggested by contour plowing.

    The word “field” is also discussed in the Glossary.

    Person’s name

    A concept may be named after a person.

    Examples

    • L’Hôpital’s Rule
    • Hausdorff space
    • Turing machine
    • Riemann surface
    • Riemannian manifold
    • Pythagorean Theorem
    • I have no idea why “Riemann” gets an ending when it is a manifold but not when it is a surface.

      Made-up name

      Some names are made up in a random way, not based on any oter language. Googol is an example.

      Named after notation

      Symbols

      A mathematical object may be named by the typographical symbol(s) used to denote it. This is used both formally and in on-the-fly references.  

      Some objects have standard names that are single letters (Greek or Roman), such as $e$, $i$ and $\pi$. There is much more about this in Alphabets.

      Be warned that any letter can be given another definition. $\pi$ is also used to name a projection, $i$ is commonly used as an index, and $e$ means energy in physics.

      Expressions

      • The multiplication in a Lie Algebra is called the “Lie bracket”. It is written “$[v,w]$”.
      • In quantum mechanics, a vector $\vec{w}$ may be notated “$|w\rangle$” and called a “ket”. Another vector $\vec{v}$ induces a linear operator on vectors that is denoted by “$\langle v|$”, which is called a “bra”. The action of $\langle v|$ on $|w\rangle$ is the inner product $\langle v|w\rangle$, which suggested the “bra” and “ket” terminology (from “bracket”). You can blame Paul Dirac for this stuff.
      • In 1985, Michael Barr and I published a book in category theory called Triples, Toposes and Theories. Immediately after that everyone in category theory started saying “monad” for what had been called “triple”. (The notation for a triple, er, monad, is of the form “$(T,\eta,\mu)$”.)
      • Synecdoche

        A synecdoche is a name of part of something that is used as a name for the whole thing.

        Examples

      The Tochar­ians appear to have called a cart by their word for wheel several thousand years ago. See the blog post by Don Ringe.

      Names from other languages

      In English, many technical names are borrowed from other languages. It may be difficult to determine what the meaning in the old language has to do with the mathematical meaning.

      Examples

    • Matrix. This is the Latin word for “uterus”. I suppose the analogy is with “container”.
    • Parabola. “Parabola” is a word borrowed from Greek in late Latin, meaning something like “comparison”. The parabola $y=x^2$ “compares” a number with its square: it curves upward because the area of a square grows faster than the length of its side. “Parable” is from the same word.
    • Algebra. This comes from an Arabic word meaning the art of setting joints, or more generally “restore”. It came through Spanish where it once meant “surgical procedure” but that meaning is now obsolete.

    Much of this information comes from The On-Line Etymological Dictionary. (Read its article about “sine”.) See also my articles on secant and tangent.

    I enjoy finding out about etymol­ogies, but I concede that knowing an ety­mol­ogy doesn’t help you very much in under­standing the math.

    Names made up from other languages’ roots

    A name may be a new word made out of (usually) Greek or Latin roots.

    Examples

    • Homomorphism. “Homo” in Greek is a root meaning “same” and “morphism” comes from a root referring to shape.
    • Quasiconformal. “Quasi” is a Latin word meaning something like “as if”. It is a prefix mathematicians use a bunch. It usually implies a weakening of the constraints that define the word it is attached to. A map is conformal if it preserves angles in a certain sense, and it is quasiconformal then it does not preserve angles but it does take circles into ellipses in a certain restricted sense (which conformal maps also do). So it replaces a constraint by a weaker constraint.


    Mathematical names cause problems for students

    The name may suggest the wrong meaning

    This is discusses in detail in the article cognitive dissonance.

    The name may not suggest any meaning

    English is unusual among major languages in the number of technical words borrowed from other languages instead of being made up from native roots.  We have some, listed under suggestive names.  But how can you tell from looking at them what “parabola” or “homomorphism” mean?   This applies to concepts named after people, too: The fact that “Hausdorff” is German for a village near an estate doesn’t tell me what a Hausdorff space is.

    The English word “carnivore” (from Latin roots) can be translated as “Fleischfresser” in German; to a German speaker, that word means literally “meat eater”.  So a question such as “What does a carnivore eat” translates into something like, “What does a meat-eater eat?” 

    Chinese is another language that forms words in that way: see the discussion of “diagonal” in Julia Lan Dai’s blog.  (I stole the carnivore example from her blog, too.)

    The result is that many technical words in English do not suggest their meaning at all to a reader not familiar with the subject.  Of course, in the case of “carnivore” if you know Latin, French or Spanish you are likely to guess the meaning, but it is nevertheless true that English has a kind of elitist stratum of technical words that provide little or no clue to their meaning and Chinese and German do not, at least not so much. This is a problem in all technical fields, not just in math.

    Pronunciation

    There are two main reasons math students have difficulties in pronouncing technical words in math.

    Most students have little knowledge of other languages

    Forty years ago nearly all Ph.D. students had to show mastery in reading math in two foreign languages; this included pronunciation, although that was not emphasized. Today the language requirements in the USA are much weaker, and younger educated Americans are generally weak in foreign languages. As a result, graduate students pronounce foreign names in a variety of ways, some of which attract ridicule from older mathematicians.

    Example: the graduate student at a blackboard who came to the last step of a long proof and announced, “Viola!”, much to the hilarity of his listeners.

    Pronunciation of words from other languages has become unpredictable

    In English-speaking countries until the early twentieth century, the practice was to pronounce a name from another language as if it were English, following the rules of English pronunciation.

    We still pronounce many common math words this way: “Euclid” is pronounced “you-clid” and “parabola” with the second syllable rhyming with “dab”.

    But other words (mostly derived from people’s names) are pronounced using the pronunciation of the language they came from, or what the speaker thinks is the foreign pronunciation. This particularly involves pronouncing “a” as “ah”, “e” like “ay”, and “i” like “ee”.

    Examples
    • Euler (oiler)
    • Fourier (foo-ree-ay)
    • Lagrange (second a pronounced “ah”)
    • Lie (lee)
    • Riemann (ree-monn)

    The older practice of pronunciation is explained by history: In 1100 AD, the rules of pronunciation of English, Ger­man and French, in particular, were remarkably similar. Over the centuries, the sound systems changed, and Eng­lish­men, for example, changed their pronunciation of “Lagrange” so that the second syllable rhymes with “range”, whereas the French changed it so that the second vowel is nasalized (and the “n” is not otherwise pronounced) and rhymes with the “a” in “father”.

    German spelling

    The German letters “ä”, “ö” and “ü” may also be spelled “ae”, “oe” and “ue” respectively. It is far better to spell “Möbius” as “Moebius” than to spell it “Mobius”.

    The German letter “ß” may be spelled “ss” and often is by the Swiss. Thus Karl Weierstrass spelled his last name “Weierstraß”. Students sometimes confuse the letter “ß” with “f” or “r”. In English language documents it is probably better to use “ss” than “ß”.

    Transliterations from Cyrillic

     The name of the Russian mathematician mot commonly spelled “Chebyshev” in English is also spelled Chebyshov, Chebishev, Chebysheff, Tschebischeff, Tschebyshev, Tschebyscheff and Tschebyschef. (Also Tschebyschew in papers written in German.) The only spelling in the list above that could be said to have some official sanction is “Chebyshev”, which is used by the Library of Congress.

    The correct spelling of his name is “Чебышев” since he was Russian and the Russian language uses the Cyrillic alphabet.

    In spite of the fact that most of the transliterations show the last vowel to be an “e”, the name in Russian is pronounced approximately “chebby-SHOFF”, accent on the last syllable.  Now, that is a ridiculous situation, and it is the transliterators who are ridiculous, not Russian spelling, which in spite of that peculiarity about the Cyrillic letter “e” is much more nearly phonetic than English spelling.

    Some other Russian names have variant spellings (Tychonov, Vinogradov) but Chebyshev probably wins the prize for the most.

Plurals

Many authors form the plural of certain technical words using endings from the language from which the words originated. Students may get these wrong, and may sometimes meet with ridicule for doing so.

Plurals ending in a vowel

Here are some of the common mathematical terms with vowel plurals.

singular plural
automaton automata
polyhedron polyhedra
focus foci
locus loci
radius radii
formula formulae
parabola parabolae
  • Linguists have noted that such plurals seem to be processed differently from s-plurals.  In particular, when used as adjectives, most nouns appear in the singular, but vowel-plural nouns appear in the plural: Compare “automata theory” with “group theory”.  No one says groups theory.  I used to say “automaton theory” but people looked at me funny.
  • The plurals that end in a (of Greek and Latin neuter nouns) are often not recognized as plurals and are therefore used as singulars.  That is how “data” became singular.  This does not seem to happen with my students with the -i plurals and the -ae plurals.
  • In the written literature, the -ae plural appears to be dying, but the -a and -i plurals are hanging on. The commonest -ae plural is “formulae”; other feminine Latin nouns such as “parabola” are usually used with the English plural. In the 1990-1995 issues of six American mathematics journals, I found 829 occurrences of “formulas” and 260 occurrences of “formulae”, in contrast with 17 occurrences of “parabolas” and and no occurrences of “parabolae”. (There were only three occurrences of “parabolae” after 1918.)  In contrast, there were 107 occurrences of “polyhedra” and only 14 of “polyhedrons”.
  • Plurals in s with modified roots

    singular

    plural

    matrix

    matrices

    simplex

    simplices

    vertex

    vertices

    Students recognize these as plurals but produce new singulars for the words as back formations. For example, one hears “matricee” and “verticee” as the singular for “matrix” and “vertex”. I have also heard “vertec”.

    Remarks

    It is not unfair to say that some scholars insist on using foreign plurals as a form of one-upmanship. Students and young professors need to be aware of these plurals in their own self interest.

    It appears to me that ridicule and put-down for using standard English plurals instead of foreign plurals, and for mispronouncing foreign names, is much less common than it was thirty years ago. However, I am assured by students that it still happens.

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 2.5 License.

Send to Kindle

Recent revisions to abstractmath.org

For the last six months or so I have been systematically going through the abstractmath.org files, editing them for consistency, updating them, and in some cases making major revisions.

In the past I have usually posted revised articles here on Gyre&Gimble, but WordPress makes it difficult to simply paste the HTML into the WP editor, because the editor modifies the HTML and does things such as recognizing line breaks and extra spaces which an HTML interpreters is supposed to ignore.

Here are two lists of articles that I have revised, with links.

Major revisions

Other revised articles

Other recent changes

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 2.5 License.

Send to Kindle

Pattern recognition and me

Recently, I revised the abstractmath.org article on pattern recognition. Doing that that prompted me to write about my own experiences with patterns. Recognizing patterns is something that has always delighted me: it is more of a big deal for me than it does for many other people. That, I believe, is what led me into doing research in math.

I have had several experiences with déjà vu, which is the result of pattern recognition with one pattern hidden. That will be a separate post. I expect to post about my experiences in recognizing patterns in math as well.

Patterns in language

As a teenager I was a page in the Savannah Public Library. There I discovered grammars for many languages. The grammars of other languages are astonishingly different from each other and are full of obscurities that I love to detect. Until I went to college, I was the only person I knew who read grammars for fun.

I am using the word “grammar” in the sense that linguists use it: patterns in our speech and writing, mostly unnoticed, that help express what we want to say)

The word “grammar” is also used to mean rules laid down by the ruling classes about phrases like “between you and I” and the uses of “whom”. Such rules primarily divide the underprivileged from the privileged, and many will disappear when the older members of the privileged class die (but they will think of new ones).

Grammar-induced glee

Russian

I got pretty good at reading and speaking Russian when I was a student (1959-62), but most of it has disappeared. In 1990, we hosted a Russian cello student with the Soviet-American Youth Orchestra for a couple of days. I could hardly say anything to him. One time he noticed one of our cats and said “кошка”, to which I replied “два кошки” (“two cats”). He responded by correcting me: “две кошки”. Then I remembered that the word for “two” in Russian is the only word in the language that distinguishes gender in the plural. I excitedly went around telling people about this until I realized that no one cared.

Spanish

Recently I visited a display about the Maya at the Minnesota Science Museum that had all its posters in English and Spanish. I discovered a past subjunctive in one of the Spanish texts. That was exciting, but I had no one to be excited with.

The preceding paragraph is an example of a Pity Play.

Just the other day our choir learned a piece for Christmas with Spanish words. It had three lines in a row ending in a past subjunctive. (It is in rhyming triples and if you use all first conjugation verbs they rhyme.) Such excitement.

Turkish

During the Cold War, I spent 18 months at İncirlik Air Base in Turkey. Turkish is a wonderful language for us geeks, very complicated yet most everything is regular. Like a computer language.

I didn’t know about computer languages during the Cold War, although they were just beginning to be used. I did work on a “computer” that you programmed by plugging cables into holes in various ways.

In Turkish, to modify a noun by a noun, you add an ending to the second noun. “İş Bankası” (no dot over the i) means “business bank”. (We would say “commercial bank”.) “İş” means “business” and “bank” by itself is “banka”. Do you think this is a lovably odd pattern? Well I do. But that’s the way I am.

A spate of spit

We live a couple blocks from Minnehaha Falls in Minneapolis. Last June the river flooded quite furiously and I went down to photograph it. I thought to my self, the river is in full spate. I wondered if the word “spate” came from the same IE root as the word “spit”. I got all excited and went home and looked it up. (No conclusion –it looks like it might be but there is no citation that proves it). Do you know anyone who gets excited about etymology?

Secret patterns in nature

All around us there are natural patterns that people don’t know about.

Cedars in Kentucky

For many years, we occasionally drove back and forth between Cleveland (where we lived) and Atlanta (where I had many relatives). We often stopped in Kentucky, where Jane grew up. It delighted me to drive by abandoned fields in Kentucky where cedars were colonizing. (They are “red cedars,” which are really junipers, but the name “cedar” is universal in the American midwest.)

What delighted me was that I knew a secret pattern: The presence of cedars means that the soil is over limestone. There is a large region including much of Kentucky and southern Indiana that lies over limestone underneath.

That gives me another secret: When you look closely at limestone blocks in a building in Bloomington, Indiana, you can see fossils. (It is better if the block is not polished, which unfortunately the University of Indiana buildings mostly are.) Not many people care about things like this.

The bump on Georgia

The first piece of pattern recognition that I remember was noticing that some states had “bumps”. This resulted in a confusing conversation with my mother. See Why Georgia has a bump.

Maybe soon I will write about why some states have panhandles, including the New England state that has a tiny panhandle that almost no one knows about.

Minnesota river

We live in Minneapolis now and occasionally drive over the Mendota Bridge, which crosses the Minnesota River. That river is medium sized, although it is a river, unlike Minnehaha Creek. But the Minnesota River Valley is a huge wide valley completely out of proportion with its river. This peculiarity hides a Secret Story that even many Minnesotans don’t know about.

The Minnesota River starts in western Minnesota and flows south and east until it runs into the Mississippi River. The source of the Red River is a few miles north of the source of the Minnesota. It flows north, becoming the boundary with North Dakota and going by Fargo and through Winnipeg and then flows into Lake Winnipeg. Thousands of years ago, all of the Red River was part of the Minnesota River and flowed south, bringing huge amounts of meltwater from the glaciers. That is what made the big valley. Eventually the glaciers receded far enough that the northern part of the river changed direction and started flowing north, leaving the Minnesota River a respectable medium sized river in a giant valley.

The Mendota Bridge is also one of the few places in the area where you can see the skyscrapers of Minneapolis and of St Paul simultaneously.

Music

Baroque music

I love baroque music because of patterns such as fugues, which I understood, and the harmony it uses, which I still don’t understand. When I was 10 years old I had already detected its different harmony and asked my music teacher about it. She waved her hands and declaimed, “I don’t understand Bach.” (She was given to proclamations. Once she said, “I am never going out of the State of Georgia again because in Virginia they put mayonnaise on their hamburgers!”)

Some baroque music uses a ground bass, which floored me when I first heard it. I went on a rampage looking for records of chaconnes and passacaglias. Then I discovered early rock music (Beatles, Doors) and figured out that they sometimes used a ground bass too. That is one of the major attractions of rock music for me, along with its patterns of harmony.

Shape note music

Some shape note tunes (for example, Villulia), as well as some early rock music, has a funny hollow sound that sounds Asian to me. I delight in secretly knowing why: They use parallel fifths.

The Beatles have one song (I have forgotten which) that had a tune which in one place had three or four beats in a row that were sung on the same pitch — except once, when the (third I think) beat was raised a fourth. I fell in love with that and excitedly pointed it out to people. They looked at me funny. Later on, I found several shape note tunes that have that same pattern.

Links

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 2.5 License.


Send to Kindle

The Greek alphabet in math

This is a revision of the portion of the article Alphabets in abstractmath.org that describes the use of the Greek alphabet by mathematicians.

Every letter of the Greek alphabet except omicron is used in math. All the other lowercase forms and all those uppercase forms that are not identical with the Latin alphabet are used.

  • Many Greek letters are used as proper names of mathe­ma­tical objects, for example $\pi$. Here, I provide some usages that might be known to undergraduate math majors.  Many other usages are given in MathWorld and in Wikipedia. In both those sources, each letter has an individual entry.
  • But any mathematician will feel free to use any Greek letter with a meaning different from common usage. This includes $\pi$, which for example is often used to denote a projection.
  • Greek letters are widely used in other sciences, but I have not attempted to cover those uses here.

The letters

  • English-speaking mathematicians pronounce these letters in various ways.  There is a substantial difference between the way American mathe­maticians pronounce them and the way they are pronounced by English-speaking mathe­maticians whose background is from British Commonwealth countries. (This is indicated below by (Br).)
  • Mathematicians speaking languages other than English may pronounce these letters differently. In particular, in modern Greek, most Greek letters are pro­nounced differ­ently from the way we pronounce them; β for example is pro­nounced vēta (last vowel as in "father").
  • Newcomers to abstract math often don’t know the names of some of the letters, or mispronounce them if they do.  I have heard young mathe­maticians pronounce $\phi $ and $\psi $ in exactly the same way, and since they were writing it on the board I doubt that anyone except language geeks like me noticed that they were doing it.  Another one pronounced $\phi $ as  “fee” and $\psi $ as “fie”.

Pronunciation key

  • ăt, āte, ɘgo (ago), bĕt, ēve, pĭt, rīde, cŏt, gō, ŭp, mūte.
  • Stress is indicated by an apostrophe after the stressed syllable, for example ū'nit, ɘgō'.
  • The pronunciations given below are what mathematicians usually use. In some cases this includes pronunciations not found in dictionaries.

 

Alpha: $\text{A},\, \alpha$: ă'lfɘ. Used occasionally as a variable, for example for angles or ordinals. Should be kept distinct from the proportionality sign "∝".

 

Beta: $\text{B},\, \beta $: bā'tɘ or (Br) bē'tɘ. The Euler Beta function is a function of two variables denoted by $B$. (The capital beta looks just like a "B" but they call it “beta” anyway.)  The Dirichlet beta function is a function of one variable denoted by $\beta$.

 

Gamma: $\Gamma, \,\gamma$: gă'mɘ. Used for the names of variables and functions. One familiar one is the $\Gamma$ function. Don’t refer to lower case "$\gamma$" as “r”, or snooty cognoscenti may ridicule you.


Delta: $\Delta \text{,}\,\,\delta$: dĕltɘ. The Dirac delta function and the Kronecker delta are denoted by $\delta $.  $\Delta x$ denotes the change or increment in x and $\Delta f$ denotes the Laplacian of a multivariable function. Lowercase $\delta$, along with $\epsilon$, is used as standard notation in the $\epsilon\text{-}\delta$ definition of limit.


Epsilon: $\text{E},\,\epsilon$ or $\varepsilon$: ĕp'sĭlɘn, ĕp'sĭlŏn, sometimes ĕpsī'lɘn. I am not aware of anyone using both lowercase forms $\epsilon$ and $\varepsilon$ to mean different things. The letter $\epsilon $ is frequently used informally to denoted a positive real number that is thought of as being small. The symbol ∈ for elementhood is not an epsilon, but many mathematicians use an epsilon for it anyway.


Zeta: $\text{Z},\zeta$: zā'tɘ or (Br) zē'tɘ. There are many functions called “zeta functions” and they are mostly related to each other. The Riemann hypothesis concerns the Riemann $\zeta $-function.


Eta: $\text{H},\,\eta$: ā'tɘ or (Br) ē'tɘ. Don't pronounce $\eta$ as "N" or you will reveal your newbieness.


Theta: $\Theta ,\,\theta$ or $\vartheta$: thā'tɘ or (Br) thē'tɘ.  The letter $\theta $ is commonly used to denote an angle. There is also a Jacobi $\theta $-function related to the Riemann $\zeta $-function. See also Wikipedia.


Iota: $\text{I},\,\iota$: īō'tɘ. Occurs occasionally in math and in some computer languages, but it is not common.


Kappa: $\text{K},\, \kappa $: kă'pɘ. Commonly used for curvature.


Lambda: $\Lambda,\,\lambda$: lăm'dɘ. An eigenvalue of a matrix is typically denoted $\lambda $.  The $\lambda $-calculus is a language for expressing abstract programs, and that has stimulated the use of $\lambda$ to define anonymous functions. (But mathematicians usually use barred arrow notation for anonymous functions.)


Mu: $\text{M},\,\mu$: mū.  Common uses: to denote the mean of a distribution or a set of numbers, a measure, and the Möbius function. Don’t call it “u”. 


Nu: $\text{N},\,\nu$: nū.    Used occasionally in pure math,more commonly in physics (frequency or a type of neutrino).   The lowercase $\nu$ looks confusingly like the lowercase upsilon, $\upsilon$. Don't call it "v".


Xi: $\Xi,\,\xi$: zī, sī or ksē. Both the upper and the lower case are used occasionally in mathe­matics. I recommend the ksee pronunciation since it is unambiguous.


Omicron: $\text{O, o}$: ŏ'mĭcrŏn.  Not used since it looks just like the Roman letter.


Pi: $\Pi \text{,}\,\pi$: pī.  The upper case $\Pi $ is used for an indexed product.  The lower case $\pi $ is used for the ratio of the circumference of a circle to its diameter, and also commonly to denote a projection function or the function that counts primes.  See default.


Rho: $\text{P},\,\rho$: rō. The lower case $\rho$ is used in spherical coordinate systems.  Do not call it pee.


Sigma: $\Sigma,\,\sigma$: sĭg'mɘ. The upper case $\Sigma $ is used for indexed sums.  The lower case $\sigma$ (don't call it "oh") is used for the standard deviation and also for the sum-of-divisors function.


Tau: $\text{T},\,\tau$ or τ: tăoo (rhymes with "cow"). The lowercase $\tau$ is used to indicate torsion, although the torsion tensor seems usually to be denoted by $T$. There are several other functions named $\tau$ as well.


Upsilon: $\Upsilon ,\,\upsilon$  ŭp'sĭlŏn. (Note: I have never heard anyone pronounce this letter, and various dictionaries suggest a ridiculous number of different pronunciations.) Rarely used in math; there are references in the Handbook.


Phi: $\Phi ,\,\phi$ or $\varphi$: fē or fī. Used for the totient function, for the “golden ratio” $\frac{1+\sqrt{5}}{2}$ (see default) and also commonly used to denote an angle.  Historically, $\phi$ is not the same as the notation $\varnothing$ for the empty set, but many mathematicians use it that way anyway, sometimes even calling the empty set “fee” or “fie”. 


Chi: $\text{X},\,\chi$: kī.  (Note that capital chi looks like $\text{X}$ and capital xi looks like $\Xi$.) Used for the ${{\chi }^{2}}$distribution in statistics, and for various math objects whose name start with “ch” (the usual transliteration of $\chi$) such as “characteristic” and “chromatic”.


Psi: $\Psi, \,\psi$; sē or sī. A few of us pronounce it as psē or psī to distinguish it from $\xi$.  $\psi$, like $\phi$, is often used to denote an angle.


Omega: $\Omega ,\,\omega$: ōmā'gɘ. $\Omega$ is often used as the name of a domain in $\mathbb{R}^n$. The set of natural numbers with the usual ordering is commonly denoted by $\omega$. Both forms have many other uses in advanced math.  

Send to Kindle

The two languages of math

I am revising the (large) section of abstractmath.org that concerns the languages of math. Below is most of the the introduction to that section, which contains in particular detailed links to its contents. All of these are now available, but only a few of them have been revised. They are the ones that say “Abstractmath 2.0” in the header.

Introduction

Mathematics in the English-speaking world is communicated using two languages:

  • Mathematical English is a special form of English.
  • It uses ordinary words with special meanings.
  • Some of its structural words (“if”, “or”) have different meanings from those of ordinary English.
  • It is both written and spoken.
  • Other languages also have special mathematical forms.
  • The symbolic language of math is a distinct, special-purpose language.
  • It has its own symbols and rules that are rather unlike those that spoken languages have.
  • It is not a dialect of English.
  • It is largely a written language.
  • Simple expressions can be pronounced, but complicated expressions may only be pointed to or referred to.
  • It is used by all mathematicians, not just those who write math in English.

Math in writing and in lectures involve both mathematical English and the symbolic language. They are embedded in each other and refer back and forth to each other.

Contents

The languages of math are covered in three chapters, each with several parts. Some things are not covered; see Notes.

Links to other sites


Notes

Math communication also uses pictures, graphs and diagrams, which abstractmath.org doesn’t discuss. Also not covered is the history and etymology of mathematical notation.

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 2.5 License.


Send to Kindle

Variations in meaning in math

Words in a natural language may have different meanings in different social groups or different places.  Words and symbols in both mathematical English and the symbolic language vary according to specialty and, occasionally, country (see convention, default).  And words and symbols can change their meanings from place to place within the same mathematical discourse (see scope).

This article mostly provides pointers to other articles in abstractmath.org that give more details about the ideas.

Conventions

A convention in mathematical discourse is notation or terminology used with a special meaning in certain contexts or in certain fields. Articles and books in a specialty do not always clue you in on these conventions.

Some conventions are nearly universal in math.

Example 1

The use of “if” to mean “if and only if” in a definition is a convention. More about this here. This is a hidden definition by cases. “Hidden” means that no one tells the students, except for Susanna Epp and me.

Example 2

Constants or parameters are conventionally denoted by a, b, … , functions by f, g, … and variables by x, y,…. More.

Example 3

Referring to a group (or other mathematical structure) and its underlying set by the same name is a convention.  This is an example of both synecdoche and context-sensitive.

Example 4

The meaning of ${{\sin }^{n}}x$ in many calculus books is:

  • The inverse sine (arcsin) if $n=-1$.
  • The mult­iplica­tive power for positive $n$; in other words, ${{\sin }^{n}}x={{(\sin x)}^{n}}$ if $n\ne -1$.

This, like Example 1, is a definition by cases. Unlike Example 1, calculus books often make it explicit. Explicit or not, this usage is an abomination.

Some conventions are pervasive among math­ematicians but different conventions hold in other subjects that use mathematics.

  • Scientists and engineers may regard a truncated decimal such as 0.252 as an approximation, but a mathematician is likely to read it as an exact rational number, namely $\frac{252}{1000}$.
  • In most computer languages a distinction is made between real numbers and integers;
    42 would be an integer but 42.0 would be a real number.  Older mathematicians may not know this.
  • Mathematicians use i to denote the imaginary unit. In electrical engineering it is commonly denoted j instead, a fact that many mathematicians are un­aware of. I first learned about it when a student asked me if i was the same as j.

Conventions may vary by country.

  • In France and possibly other countries schools may use “positive” to mean “nonnegative”, so that zero is positive. 
  • In the secondary schools in some places, the value of sin x may be computed clockwise starting at (0,1)  instead of counterclockwise starting at (1,0).  I have heard this from students. 

Conventions may vary by specialty within math.

Field” and “log” are examples. 

Defaults

An interface to a computer program may have many possible choices for the user to make. In most cases, the interface will use certain choices automatically when the user doesn’t specify them.  One says the program defaults to those choices.  

Examples

  • A word processing program may default to justified paragraphs and insert mode, but allow you to pick ragged right or typeover mode.
  • I have spent a lot of time in both Minne­sota and Georgia and the remarks about skiing are based on my own observation. But these usages are not absolute. Some affluent Geor­gians may refer to snow skiing as “skiing”, for example, and this usage can result in a put-down if the hearer thinks they are talking about water skiing. One wonders where the boundary line is. Perhaps people in Kentucky are confused on the issue.

  • There is a sense in which the word “ski” defaults to snow skiing in Minnesota and to water skiing in Georgia.
  • “CSU” defaults to Cleveland State University in northern Ohio and to Colorado State University in parts of the west.

Math language behaves in this way, too.

Default usage in mathematical discourse

Symbols

  • In high school, $\pi$ refers by default to the ratio of the circumference of a circle to its diameter.  Students are often quite surprised when they get to abstract math courses and discover the many other meanings of $\pi $ (see here).
  • Recently authors in the popular literature seem to think that $\phi$ (phi) defaults to the golden ratio.  In fact, a search through the research literature shows very few hits for $\phi$ meaning the golden ratio: in other words, it usually means something else. 
  • The set $\mathbb{R}$ of real numbers has many different group structures defined on it but “The group $\mathbb{R}$” essentially always means that the group operation is ordinary addition.  In other words, “$\mathbb{R}$” as a group defaults to +.  Analogous remarks apply to “the field $\mathbb{R}$”. 
  • In informal conversation among many analysts, functions are continuous by default.
  • It used to be the case that in informal conversations among topologists, “group” defaulted to Abelian group. I don’t know whether that is still true or not.

Remark

This meaning of “default” has made it into dictionaries only since around 1960 (see the Wikipedia entry). This usage does not carry a derogatory connotation.   In abstractmath.org I am using the word to mean a special type of convention that imposes a choice of parameter, so that it is a special case of both “convention” and “suppression of parameters”.

Scope

Both mathematical English and the symbolic language have a feature that is uncommon in ordinary spoken or written English:  The meaning of a phrase or a symbolic expression can be different in different parts of the discourse.   The portion of the text in which a particular meaning is in effect is called the scope of the meaning.  This is accomplished in several ways.

Explicit statement

Examples

  • “In this paper, all groups are abelian”.  This means that every instance of the word “group” or any symbol denoting a group the group is constrained to be abelian.   The scope in this case is the whole paper.   See assumption.
  • “Suppose (or “let” or “assume”) $n$ is divisible by $4$”. Before this statement, you could not assume $n$ is divisible by $4$. Now you can, until the end of the current paragraph or section.

Definition

The definition of a word, phrase or symbol sets its meaning.  If the word definition is used and the scope is not given explicitly, it is probably the whole discourse.

Example

“Definition.  An integer is even if it is divisible by 2.”  This is marked as a definition, so it establishes the meaning of the word “even” (when applied to an integer) for the rest of the text. 

If

Used in modus ponens (see here) and (along with let, usually “now let…”) in proof by cases.

Example(modus ponens)

Suppose you want to prove that if an integer $n$ is divisible by $4$ then it is even. To show that it is even you must show that it is divisible by $2$. So you write:

  • “Let $n$ be divisible by $4$. That means $n=4k$ for some integer $k$. But then $n=2(2k)$, so $n$ is even by definition.”

Now if you start a new paragraph with something like “For any integer $n\ldots$” you can no longer assume $n$ is divisible by $4$.

Example (proof by cases)

Theorem: For all integers $n$, $n^2+n+1$ is odd.

Definitions:

  • “$n$ is even” means that $n=2s$ for some integer $s$.
  • “$n$ is odd” means that $n=2t+1$ for some integer $t$.

Proof:

  • Suppose $n$ is even. Then

    \[\begin{align*}
    n^2+n+1&=4s^2+2s+1\\
    &=2(2s^2+s)+1\\
    &=2(\text{something})+1
    \end{align*}\]

    so $n^2+n+1$ is odd. (See Zooming and Chunking.)

  • Now suppose $n$ is odd. Then

    \[\begin{align*}
    n^2+n+1&=(2t+1)^2+2t+1+1\\
    &=4t^2+4t+1+2t+1+1\\
    &=2(2t^2+3t)+3\\
    &=2(2t^2+3t+1)+1\\
    &=2(\text{something})+1
    \end{align*}\]

    So $n^2+n+1$ is odd.

Remark

The proof I just gave uses only the definition of even and odd and some high school algebra. Some simple grade-school facts about even and odd numbers are:

  • Even plus even is even.
  • Odd plus odd is even.
  • Even times even is even.
  • Odd times odd is odd.

Put these facts together and you get a nicer proof (I think anyway): $n^2+n$ is even, so when you add $1$ to it you must get an odd number.

Bound variables

A variable is bound if it is in the scope of an integral, quantifier, summation, or other binding operators.  More here.

Example

Consider this text:

Exercise: Show that for all real numbers $x$, it is true that $x^2\geq0$. Proof: Let $x=-2$. Then $x^2=(-2)^2=4$ which is greater than $0$. End of proof.”

The problem with that text is that in the statement, “For all real numbers $x$, it is true that $x^2\geq0$”, $x$ is a bound variable. It is bound by the universal quantifier “for all” which means that $x$ can be any real number whatever. But in the next sentence, the meaning of $x$ is changed by the assumption that $x=-2$. So the statement that $x\geq0$ only applies to $-2$. As a result the proof does not cover all cases.

Many students just beginning to learn to do proofs make this mistake. Fellow students who are a little further along may be astonished that someone would write something like that paragraph and might sneer at them. But this common mistake does not deserve a sneer, it deserves an explanation. This is an example of the ratchet effect.

Variable meaning in natural language

Meanings commonly vary in natural language because of conventions and defaults. But varying in scope during a conversation seems to me uncommon.

It does occur in games. In Skat and Bridge, the meaning of “trump” changes from hand to hand. The meaning of “strike” in a baseball game changes according to context: If the current batter has already had fewer than two strikes, a foul is a strike, but not otherwise.

I have not come up with non-game examples, and anyway games are played by rules that are suspiciously like mathematical axioms. Perhaps you can think of some non-game occasions in which meaning is determined by scoping that I have overlooked.

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 2.5 License.


Send to Kindle

Thinking about thought

Modules of the brain

Cognitive neuroscientists have taken the point of view that concepts, memories, words, and so on are represented in the brain by physical systems: perhaps they are individual neurons, or systems of structures, or even waves of discharges. In my previous writing I have referred to these as modules, and I will do that here. Each module is connected to many other modules that encode various properties of the concept, thoughts and memories that occur when you think of that concept (in other words stimulate the module), and so on.

How these modules implement the way we think and perceive the world is not well understood and forms a major research task of cognitive neuroscience. The fact that they are implemented in physical systems in the brain gives us a new way of thinking about thought and perception.

Examples

The grandmother module

There is a module in your brain representing the concept of grandmother. It is likely to be connected to other modules representing your actual grandmothers if you have any memory of them. These modules are connected to many others — memories (if you knew them), other relatives related to them, incidents in their lives that you were told about, and so on. Even if you don’t have any memory of them, you have a module representing the fact that you don’t have any memory of them, and maybe modules explaining why you don’t.

Each different aspect related to “grandmother” belongs to a separate module somehow connected to the grandmother module. That may be hard to believe, but the human brain has over eighty billion neurons.

A particular module connected with math

There is a module in your brain connected with the number $42$. That module has many connections to things you know about it, such as its factorization, the fact that it is an integer, and so on. The module may also have connections to a module concerning the attitude that $42$ is the Answer. If it does, that module may have a connection with the module representing Douglas Adams. He was physically outside your body, but is the number $42$ outside your body?

That has a decidedly complicated answer. The number $42$ exists in a network of brains which communicate with each other and share some ideas about properties of $42$. So it exists socially. This social existence occasionally changes your knowledge of the properties of $42$ and in particular may make you realize that you were wrong about some of its aspects. (Perhaps you once thought it was $7\times 8$.)

This example suggests how I have been using the module idea to explain how we think about math.

A new metaphor for understanding thinking

I am proposing to use the idea of module as a metaphor for thinking about thinking. I believe that it clarifies a lot of the confusion people have about the relation between thinking and the real world. In particular it clarifies why we think of mathematical objects as if they were real-world objects (see Modules and math below.)

I am explicitly proposing this metaphor as a successor to previous metaphors drawn from science to explain things. For example when machines became useful in the 18th century many naturalists used metaphors such as the Universe is a Machine or the Body is a Machine as a way of understanding the world. In the 20th century we fell heavily for the metaphor that the Mind Is A Computer (or Program). Both the 18th century and the 20th century metaphors (in my opinion) improved our understanding of things, even though they both fell short in many ways.

In no way am I claiming that the ways of thinking I am pushing have anything but a rough resemblance to current neuroscientists’ thinking. Even so, further discoveries in neuroscience may give us even more insight into thinking that they do now. Unless at some point something goes awry and we have to, ahem, think differently again.

For thousands of years, new scientific theories have been giving us new metaphors for thinking about life, the universe and everything. I am saying here is a new apple on the tree of knowledge; let’s eat it.

The rest of this post elaborates my proposed metaphor. Like any metaphor, it gets some things right and some wrong, and my explanations of how it works are no doubt full of errors and dubious ideas. Nevertheless, I think it is worth thinking about thought using these ideas with the usual correction process that happens in society with new metaphors.

Our theory of the world

We don’t have any direct perception of the “real world”; we have only the sensations we get from those parts of our body which sense things in the world. These sensations are organized by our brain into a theory of the world.

  • The theory of the world says that the world is “out there” and that our sensory units give us information about it. We are directly aware of our experiences because they are a function of our brain. That the experiences (many of them) originate from outside our body is a very plausible theory generated by our brain on the bases of these experience.
  • The theory is generated by our brain in a way that we cannot observe and is out of our control (mostly). We see a table and we know we can see in in daytime but not when it is dark and we can bump into it, which causes experiences to occur via our touch and sound facilities. But the concept of “table” and the fact that we decide something is or is not a table takes place in our brain, not “out there”.
  • We do make some conscious amendments to the theory. For example, we “know” the sky is not a blue shell around our world, although it looks like it. That we think of the apparent blue surface as an artifact of our vision processing comes about through conscious reasoning. But most of how we understand the world comes about subconsciously.
  • Our brain (and the rest of our body) does an enormous amount of processing to create the view of the world that we have. Visual perception requires a huge amount of processing in our brain and the other sensory methods we use also undergo a lot of processing, but not as much as vision.
  • The theory of the world organizes a lot of what we experience as interaction with physical objects. We perceive physical objects as having properties such as persistence, changing with time, and so on. Our brains create the concept of physical object and the properties of persistence, changing, and particular properties an individual object might have.
  • We think of the Mississippi River as an object that is many years old even though none of its current molecules are the same as were in the river a decade ago. How is it one thing when its substance is constantly changing? This is a famous and ancient conundrum which becomes a non-problem if you realize that the “object” is created inside your brain and imposed by your thinking on your understanding of the world.
  • The notion that semantics is a connection between our brain and the outside world has also become a philosophical conundrum that vanishes if we understand that the connection with the outside world exists entirely inside our theory, which is entirely within our brain.

Society

Our brain also has a theory of society We are immersed in a world of people, that we have close connections with some of them and more distant connections with many other via speech, stories, reading and various kinds of long-distance communications.

  • We associate with individual people, in our family and with our friend. The communication is not just through speech: it involves vision heavily (seeing what The Other is thinking) and probably through pheromones, among other channels. For one perspective on vision, see The vision revolution, by Mark Changizi. (Review)
  • We consciously and unconsciously absorb ideas and attitudes (cultural and otherwise) from the people around us, especially including the adults and children we grow up with. In this way we are heavily embedded in the social world, which creates our point of view and attitudes by our observation and experience and presumably via memes. An example is the widespread recent changes in attitudes in the USA concerning gay marriage.
  • The theory of society seems to me to be a mechanism in our brain that is separate from our theory of the physical world, but which interacts with it. But it may be that it is better to regard the two theories as modules in one big theory.

Modules and math

The module associated with a math object is connected to many other modules, some of which have nothing to do with math.

  • For example, they may have have connections to our sensory organs. We may get a physical feeling that the parabola $y=x^2$ is going “up” as $x$ “moves to the right”. The mirror neurons in our brain that “feel” this are connected to our “parabola $y=x^2$” module. (See Constructivism and Platonism and the posts it links to.)
  • I tend to think of math objects as “things”. Every time I investigate the number $111$, it turns out to be $3\times37$. Every time I investigate the alternating group on $6$ letters it is simple. If I prove a new theorem it feels as if I have discovered the theorem. So math objects are out there and persistent.
  • If some math calculation does not give the same answer the second time I frequently find that I made a mistake. So math facts are consistent.
  • There is presumably a module that recognizes that something is “out there” when I have repeatable and consistent experiences with it. The feeling originates in a brain arranged to detect consistent behavior. The feeling is not evidence that math objects exist in some ideal space. In this way, my proposed new way of thinking about thought abolishes all the problems with Platonism.
  • If I think of two groups that are isomorphic (for example the cyclic group of order $3$ and the alternating group of rank $3$), I picture them as in two different places with a connection between the two isomorphic ones. This phenomenon is presumably connected with modules that respond to seeing physical objects and carrying with them a sense of where they are (two different places). This is a strategy my brain uses to think about objects without having to name them, using the mechanism already built in to think about two things in different places.

Acknowledgments

Many of the ideas in this post come from my previous writing, listed in the references. This post was also inspired by ideas from Chomsky, Jackendoff (particularly Chapter 9), the Scientific American article Brain cells for Grandmother by Quian Quiroga, Fried and Koch, and the papers by Ernest and Hersh.


References

Previous posts

In reverse chronological order

Abstractmath articles

Other sources

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 2.5 License.


Send to Kindle

Naming mathematical objects

Commonword names confuse

Many technical words and phrases in math are ordinary English words ("commonwords") that are assigned a different and precisely defined mathematical meaning.  

  • Group  This sounds to the "layman" as if it ought to mean the same things as "set".  You get no clue from the name that it involves a binary operation with certain properties.  
  • Formula  In some texts on logic, a formula is a precisely defined expression that becomes a true-or-false sentence (in the semantics) when all its variables are instantiated.  So $(\forall x)(x>0)$ is a formula.  The word "formula" in ordinary English makes you think of things like "$\textrm{H}_2\textrm{O}$", which has no semantics that makes it true or false — it is a symbolic expression for a name.
  • Simple group This has a technical meaning: a group with no nontrivial normal subgroup.  The Monster Group is "simple".  Yes, the technical meaning is motivated by the usual concept of "simple", but to say the Monster Group is simple causes cognitive dissonance.

Beginning students come with the (generally subconscious) expectation that they will pick up clues about the meanings of words from connotations they are already familiar with, plus things the teacher says using those words.  They think in terms of refining an understanding they already have.  This is more or less what happens in most non-math classes.  They need to be taught what definition means to a mathematician.

Names that don't confuse but may intimidate

Other technical names in math don't cause the problems that commonwords cause.

Named after somebody The phrase "Hausdorff space" leads a math student to understand that it has a technical meaning.  They may not even know it is named after a person, but it screams "geek word" and "you don't know what it means".  That is a signal that you can find out what it means.  You don't assume you know its meaning. 

New made-up words  Words such as "affine", "gerbe"  and "logarithm" are made up of words from other languages and don't have an ordinary English meaning.  Acronyms such as "QED", "RSA" and "FOIL" don't occur often.  I don't know of any math objects other than "RSA algorithm" that have an acronymic name.  (No doubt I will think of one the minute I click the Publish button.)  Whole-cloth words such as "googol" are also rare.  All these sorts of words would be good to name new things since they do not fool the readers into thinking they know what the words mean.

Both types of words avoid fooling the student into thinking they know what the words mean, but some students are intimidated by the use of words they haven't seen before.  They seem to come to class ready to be snowed.  A minority of my students over my 35 years of teaching were like that, but that attitude was a real problem for them.

Audience

You can write for several different audiences.

Math fans (non-mathematicians who are interested in math and read books about it occasionally) In my posts Explaining higher math to beginners and in Renaming technical conceptsI wrote about several books aimed at explaining some fairly deep math to interested people who are not mathematicians.  They renamed some things. For example, Mark Ronan in Symmetry and the Monster used the phrase "atom" for "simple group" presumably to get around the cognitive dissonance.  There are other examples in my posts.  

Math newbies  (math majors and other students who want to understand some aspect of mathematics).  These are the people abstractmath.org is aimed at. For such an audience you generally don't want to rename mathematical objects. In fact, you need to give them a glossary to explain the words and phrases used by people in the subject area.   

Postsecondary math students These people, especially the math majors, have many tasks:

  • Gain an intuitive understanding of the subject matter.
  • Understand in practice the logical role of definitions.
  • Learn how to come up with proofs.
  • Understand the ins and outs of mathematical English, particularly the presence of ordinary English words with technical definitions.
  • Understand and master the appropriate parts of the symbolic language of math — not just what the symbols mean but how to tell a statement from a symbolic name.

It is appropriate for books for math fans and math newbies to try to give an understanding of concepts without necessary proving theorems.  That is the aim of much of my work, which has more an emphasis on newbies than on fans. But math majors need as well the traditional emphasis on theorem and proof and clear correct explanations.

Lately, books such as Visual Group Theory have addressed beginning math majors, trying for much more effective ways to help the students develop good intuition, as well as getting into proofs and rigor. Visual Group Theory uses standard terminology.  You can contrast it with Symmetry and the Monster and The Mystery of the Prime Numbers (read the excellent reviews on Amazon) which are clearly aimed at math fans and use nonstandard terminology.  

Terminology for algebraic structures

I have been thinking about the section of Abstracting Algebra on binary operations.  Notice this terminology:

boptable

The "standard names" are those in Wikipedia.  They give little clue to the meaning, but at least most of them, except "magma" and "group", sound technical, cluing the reader in to the fact that they'd better learn the definition.

I came up with the names in the right column in an attempt to make some sense out of them.  The design is somewhat like the names of some chemical compounds.  This would be appropriate for a text aimed at math fans, but for them you probably wouldn't want to get into such an exhaustive list.

I wrote various pieces meant to be part of Abstracting Algebra using the terminology on the right, but thought better of it. I realized that I have been vacillating between thinking of AbAl as for math fans and thinking of it as for newbies. I guess I am plunking for newbies.

I will call groups groups, but for the other structures I will use the phrases in the middle column.  Since the book is for newbies I will include a table like the one above.  I also expect to use tree notation as I did in Visual Algebra II, and other graphical devices and interactive diagrams.

Magmas

In the sixties magmas were called groupoids or monoids, both of which now mean something else.  I was really irritated when the word "magma" started showing up all over Wikipedia. It was the name given by Bourbaki, but it is a bad name because it means something else that is irrelevant.  A magma is just any binary operation. Why not just call it that?  

Well, I will tell you why, based on my experience in Ancient Times (the sixties and seventies) in math. (I started as an assistant professor at Western Reserve University in 1965). In those days people made a distinction between a binary operation and a "set with a binary operation on it".  Nowadays, the concept of function carries with it an implied domain and codomain.  So a binary operation is a function $m:S\times S\to S$.  Thinking of a binary operation this way was just beginning to appear in the common mathematical culture in the late 60's, and at least one person remarked to me: "I really like this new idea of thinking of 'plus' and 'times' as functions."  I was startled and thought (but did not say), "Well of course it is a function".  But then, in the late sixties I was being indoctrinated/perverted into category theory by the likes of John Isbell and Peter Hilton, both of whom were briefly at Case Western Reserve University.  (Also Paul Dedecker, who gave me a glimpse of Grothendieck's ideas).

Now, the idea that a binary operation is a function comes with the fact that it has a domain and a codomain, and specifically that the domain is the Cartesian square of the codomain.  People who didn't think that a binary operation was a function had to introduce the idea of the universe (universal algebraists) or the underlying set (category theorists): you had to specify it separately and introduce terminology such as $(S,\times)$ to denote the structure.   Wikipedia still does it mostly this way, and I am not about to start a revolution to get it to change its ways.

Groups

In the olden days, people thought of groups in this way:

  • A group is a set $G$ with a binary operation denoted by juxtaposition that is closed on $G$, meaning that if $a$ and $b$ are any elements of $G$, then $ab$ is in $G$.
  • The operation is associative, meaning that if $a,\ b,\ c\in G$, then $(ab)c=a(bc)$.
  • The operation has a unity element, meaning an element $e$ for which for any element $a\in G$, $ae=ea=a$.
  • For each element $a\in G$, there is an element $b$ for which $ab=ba=e$.

This is a better way to describe a group:

  • A group consist of a nullary operation e, a unary operation inv,  and a binary operation denoted by juxtaposition, all with the same codomain $G$. (A nullary operation is a map from a singleton set to a set and a unary operation is a map from a set to itself.)
  • The value of e is denoted by $e$ and the value of inv$(a)$ is denoted by $a^{-1}$.
  • These operations are subject to the following equations, true for all $a,\ b,\ c\in G$:

     

    • $ae=ea=a$.
    • $aa^{-1}=a^{-1}a=e$.
    • $(ab)c=a(bc)$.

This definition makes it clear that a group is a structure consisting of a set and three operations whose axioms are all equations.  It was formulated by people in universal algebra but you still see the older form in texts.

The old form is not wrong, it is merely inelegant.  With the old form, you have to prove the unity and inverses are unique before you can introduce notation, and more important, by making it clear that groups satisfy equational logic you get a lot of theorems for free: you construct products on the cartesian power of the underlying set, quotients by congruence relations, and other things. (Of course, in AbAl those theorem will be stated later than when groups are defined because the book is for newbies and you want lots of examples before theorems.)

References

  1. Three kinds of mathematical thinkers (G&G post)
  2. Technical meanings clash with everyday meanings (G&G post)
  3. Commonword names for technical concepts (G&G post)
  4. Renaming technical concepts (G&G post)
  5. Explaining higher math to beginners (G&G post)
  6. Visual Algebra II (G&G post)
  7. Monads for high school II: Lists (G&G post)
  8. The mystery of the prime numbers: a review (G&G post)
  9. Hersh, R. (1997a), "Math lingo vs. plain English: Double entendre". American Mathematical Monthly, volume 104, pages 48–51.
  10. Names (in abmath)
  11. Cognitive dissonance (in abmath)
Send to Kindle

Improve your language

(Note: Sentences in small print are incidental remarks.  I meant them to be in small print.  The other variations in size of print is due entirely to CKEditor and I didn't mean it to happen.)

"Improve your language" probably makes you think of commands from certain uppity friends like:

  • Don't say, "I have to work just like everybody has to work" — say "just as".
  • Don't say, "Who are you talking to?", say "To whom are you talking?"

These are statements made by people who believe in "correct English" (conforming to a standard imposed by some educated white people).

This blog is not about that sort of thing  It is about bugs in the English language.  I have written about that before (Bugs in English and in mathComma rule found dysfunctional). 

1. Flammable and Inflammable

Both these words mean the same thing.  This is a bug that can do real damage.  In fact companies that make flammable products have policies requiring the use of "flammable" and "fireproof" to avoid what could be serious damage.  Webster's New World Dictionary warns against using "inflammable", but under "flammable", which seems pointless.  (I was a contributing editor to the fourth edition but they didn't ask me about "inflammable".)  Wiktionary also warns against using "inflammable", but not the Oxford English Dictionary.

By the way, I recently learned that some government agency has instituted a standard that "Exit" signs should be in green lighting. Many older ones are red, which usually means "Stop".  As usual, the European Union agitated for this long before the USA did.  I wonder if red exit signs ever fooled anyone.

2. Unisex 3rd person singular pronoun needed

This bug does not cause explosions, except metaphorically, but it is a real problem.  Until the last few years, the only way to achieve neutrality was through clumsy rewording.  In my three books (two written with Michael Barr), we alternated using "he" and "she".  In academic prose, it is common to write things such as "If the reader factors the polynomial, he will discover…".  We would sometimes write "…she will discover…".  No one complained.  Lots of other recent academic writers do this trick, too.  

In these posts and in abstractmath I have Reached A Higher Level (or Lower, according to some people) and use "you" a lot, both in the usual meaning and in the colloquial use replacing "one" (meaning 8 in the OED).  Examples:

  • "If you factor the polynomial, you'll discover…" (Notice the "you'll" –contractions are happening a lot in academic writing these days, too, and in research papers, not just science popularizations.  See The revolution in technical exposition II.)
  • "When someone refers to imaginary numbers it makes you think they are fictitious."   

Brits to the rescue

However, many writers, especially in Britain, have been deliberately using "they" as a 3rd person singular pronoun.  This is the OED meaning 2, and it dates back a long way.  OED meaning 3 is also relevant.  This is discussed extensively in Wikipedia. I have given several other references below.  Note that they are mostly British.

My favorite OED quote is from Fielding: "Every Body fell a laughing, as how could they help it" . I sometimes say things like, "I'm a-running around doing errands" because I think of myself as a southerner (of the American variety), but that is purely posturing — I never heard anyone say a-anything when I was growing up in (the USA version of) Georgia

The next two entries were in a previous post.

3. Right

Q: "Should I turn left at the next corner?" A: "Right".  Probably most Americans who drive now know this bug.  The answer could mean "yes" or "turn right".  So we have to stop and think how to answer this question.  That makes it a bug.  When Jane and I drive together we have learned to answer that question "yes" or "correct".  

4. Too, two

Comment: " We will take Route 30".  Answer: "We will take Route 30 too".  (Say it out loud) This bug may be responsible for the survival of the word "also".  

Note that unlike the case of "right", this is a bug only of spoken English.

Repairing English

Examples 1 and 2 exhibit cases where English bugs cause genuine problems that need repair.  In both cases, deliberate efforts are being made in an organized bottom-up effort to solve the problems.   And both efforts seem to be working.  In the other examples, people come up with workarounds, but not in an organized fashion.  

Now, English does not have an Academy that thinks it runs the language. Spanish and French do.  But in fact when they try to do anything the least bit radical, they usually fail.

  • The Spanish Royal Academy has tried for years to enforce certain rules for the use of third person pronouns but they have apparently (correct me if I am wrong) failed to have any effect.  
  • There was a German spelling reform in the 1990's that the main German speaking countries agreed to and tried to enforce, but they failed miserably.
  • Three branches of the French goverment, along with the French Academy, had long furious discussions about how to translate "cloud computing"  into French.  Many people in the literary and government power structure do not want French people to use English words while speaking French.   But the stuffier types would not allow "informatique en nuage", so the "problem" was left unsolved.  Meanwhile the French go on calling it "cloud computing", as on this website.  

"Informatique en nuage" would be a calque on English, like "Adam's apple" is a calque in English on French "pomme d'Adam".  Meanwhile, English, which thankfully has no Academy, has made hundreds of calques on other languages, mostly to our benefit, not to mention borrowing an enormous number of words directly from French.  

People also change the way they talk without a good reason: consider "between you and I", which is an unneeded change, but it appears to be on its way to standard.  (I say that because, unlike usages such as "I don't want no cabbage", "between you and I" is very common among educated young people.)  Older people often can't stand any change in the way we talk, but as I said in another context, Old Fogies don't like "between you and I", but they die and then the younger people do what they like

I think it is safe to say that needed reform in a language often comes from the ingenuity of the people, sometimes in severe cases with leadership from nongovernmental groups of people, but most often simply by people changing how they talk.  

References

All purpose pronoun, New York Times blog post on singular they.

Bugs in English and in math, previous post

Category theory for computing science, by Michael Barr and Charles Wells

Handbook of mathematical discourse, by Charles Wells

If someone tells you singular 'they' is wrong, please do tell them to get stuffed (Telegraph blog post)

Singular they (Economist blog post)

Singular they (Wikipedia)

The French Get Lost in the Clouds Over a New Term in the Internet Age (Wall Street Journal) 

The revolution in technical exposition II, previous post

Toposes, triples and theories, by Michael Barr and Charles Wells

 

Send to Kindle