Category Archives: abstractmath.org

Posts about the abstractmath.org website.

Definition of function

Note: This is a revision of the article on specification and definition of functions from abstractmath.org. Many of the links in this article take you to other articles in abstractmath.org.

A function is a mathematical object.

To deal with functions as a math object, you need a precise definition of “function”. That is what this article gives you.

  • The article starts by giving a specification of “function”.
  • After that, we get into the technicalities of the
    definitions of the general concept of function.
  • Things get complicated because there are several inequivalent definitions of “function” in common use.

Specification of “function”

A function $f$ is a mathematical object which determines and is completely determined by the following data:


  • (DOM) $f$ has a domain, which is a set. The domain may be denoted by $\text{dom} f$.
  • (COD) $f$ has a codomain, which is also a set and may be denoted by $\text{cod} f$.
  • (VAL) For each element $a$ of the domain of $f$, $f$ has a value at $a$.
  • (FP) The value of $f$ at $a$ is
    completely determined by $a$ and $f$.
  • (VIC) The value of $f$ at $a$ must be an element of the codomain of $f$.

  • The value of $f$ at $a$ is most cohttp://www.abstractmath.org/MM/MMonly written $f(a)$, but see Functions: Notation and Terminology.
  • To evaluate $f$ at $a$ means to determine $f(a)$. The two examples of functions below show that different functions may have different strategies for evaluating them.
  • In the expression “$f(a)$”, $a$ is called the input or (old-fashioned) argument of $f$.
  • “FP” means functional property.
  • “VIC” means “value in codomain”.

Examples

I give two examples here. The examples of functions chapter contains many other examples.

A finite function

Let $F$ be the function defined on the set $\left\{\text{a},\text{b},\text{c},\text{d}\right\}$ as follows: \[F(\text{a})=\text{a},\,\,\,F(\text{b})=\text{c},\,\,\,F(\text{c})=\text{c},\,\,\,F(\text{d})=\text{b}\]In this definition, $\text{a},\text{b},\text{c},\text{d}$ are letters of the alphabet, not variables. This is the function called “Finite” in the chapter on examples of functions.

  • The definition of $F$ says “$F$ is defined on the set $\left\{\text{a},\,\text{b},\,\text{c},\,\text{d} \right\}$”. The phrase “is defined on”
    means that the domain is that set. That is standard terminology.
  • The value of $F$ at each element of the domain is given explicitly. The value at
    $\text{b}$, for example, is $\text{c}$, because the definition says that $F(\text{b}) = \text{c}$. No other reason needs to be given. Mathematical definitions can be arbitrary.
  • The codomain of $F$ is not specified, but must include the set $\{\text{a},\text{b},\text{c}\}$. The codomain of a function is often not specified when it is not important, which is most of the time in freshman calculus (for example).
  • The diagram below shows how $F$ obeys the rule that the value of an element $x$ in the domain is completely determined by $x$ and $F$.
  • If two arrows had started from the same element of the domain, then $F$ would not be a function. (It would be a multivalued function).
  • If there were an element of the domain that no arrow started from, it $F$ would not be a function. (It would be a partial function.)
  • In this example, to evaluate $F$ at $b$ (to determine the value of $F$ at $b$) means to look at the definition of $F$, which says among other things that the value is $c$ (or alternatively, look at the diagram above and see what letter the arrow starting at $b$ points to). In this case, “evaluation” does not imply calculating a formula.

A real-valued function

Let $G$ be the real-valued function defined by the formula $G(x)={{x}^{2}}+2x+5$.

  • The definition of $G$ gives the value at each element of the domain by a formula. The value at $3$, for example, is obtained by calculating \[G(3)=3^2+2\cdot3+5=20\]
  • The definition of $G$
    does not specify the domain. The convention in the case of functions defined on the real numbers by a formula is to take the domain to be all real numbers at which the formula is defined. In this case, that is every real number, so the domain is $\mathbb{R}$.
  • The definition of $G$ does not specify the codomain, either. However, the codomain must include all real numbers greater than or equal to $4$. (Why?)
  • So if an author wrote, “Let $H(x)=\frac{1}{x}$”, the domain would be the set of all real numbers except $0$. But a careful author would write, “Let $H(x)=\frac{1}{x}$ ($x\neq0$).”

What the specification means

  • The specification guarantees that a function satisfies all five of the properties listed.
  • The specification does not define a mathematical structure in the way mathematical structures have been defined in the past: In particular, it does not require a function to be one or more sets with structure.
  • Even so, it is useful to have the specification, because:

    Many mathematical definitions
    introduce extraneous technical elements
    which clutter up your thinking
    about the object they define.

History

The discussion below is an over­simpli­fication of the history of mathe­matics, which many people have written thick books about. A book relevant to these ideas is Plato’s Ghost, by Jeremy Gray.

Until late in the nineteenth century, functions were usually thought of as defined by formulas (including infinite series). Problems arose in the theory of harmonic analysis which made mathematicians require a more general notion of function. They came up with the concept of function as a set of ordered pairs with the functional property (discussed below), and that understanding revolutionized our understanding of math.

In particular, this definition, along with the use of set theory, enabled abstract math (ahem) to become a cohttp://www.abstractmath.org/MM/MMon tool for understanding math and proving theorems. It is conceivable that some readers may wish it hadn’t. Well, tough.

The modern definition of function given here (which builds on the ordered pairs with functional property definition) came into use beginning in the 1950’s. The modern definition became necessary in algebraic topology and is widely used in many fields today.

The concept of function as a formula never disappeared entirely, but was studied mostly by logicians who generalized it to the study of function-as-algorithm. Of course, the study of algorithms is one of the central topics of modern computing science, so the notion of function-as-formula (updated to function-as-algorithm) has achieved a new importance in recent years.

To state both the definition, we need a preliminary idea.


The functional property

A set $P$ of ordered pairs has the functional property if two pairs in $P$ with the same first coordinate have to have the same second coordinate (which means they are the same pair). In other words, if $(x,a)$ and $(x,b)$ are both in $P$, then $a=b$.

How to think about the functional property

The point of the functional property is that for any pair in the set of ordered pairs, the first coordinate determines what the second one is (which is just what requirement FP says in the specification). That’s why you can write “$G(x)$” for any $x$ in the domain of $G$ and not be ambiguous.

Examples

  • The set $\{(1,2), (2,4), (3,2), (5,8)\}$ has the functional property, since no two different pairs have the same first coordinate. Note that there are two different pairs with the same second coordinate. This is irrelevant to the functional property.
  • The set $\{(1,2), (2,4), (3,2), (2,8)\}$ does not have the functional property. There are two different pairs with first coordinate 2.
  • The empty set $\emptyset$ has the function property vacuously.

Example: graph of a function defined by a formula


In calculus books, a picture like this one (of part of $y=x^2+2x+5$) is called a graph. Here I use the word “graph” to denote the set of ordered pairs
\[\left\{ (x,{{x}^{2}}+2x+5)\,\mathsf{|}\,x\in \mathbb{R } \right\}\]
which is a mathematical object rather than some ink on a page or pixels on a screen.

The graph of any function studied in beginning calculus has the functional property. For example, the set of ordered pairs above has the functional property because if $x$ is any real number, the formula ${{x}^{2}}+2x+5$ defines a specific real number.

  • if $x = 0$, then ${{x}^{2}}+2x+5=5$, so the pair $(0, 5)$ is an element of the graph of $G$. Each time you plug in $0$ in the formula you get 5.
  • if $x = 1$, then ${{x}^{2}}+2x+5=8$.
  • if $x = -2$, then ${{x}^{2}}+2x+5=5$.

You can measure where the point $\{-2,5\}$ is on the (picture of) the graph and see that it is on the blue curve as it should be. No other pair whose first coordinate is $-2$ is in the graph of $G$, only $(-2, 5)$. That is because when you plug $-2$ into the formula ${{x}^{2}}+2x+5$, you get $5$ and nothing else. Of course, $(0, 5)$ is in the graph, but that does not contradict the functional property. $(0, 5)$ and $(-2, 5)$ have the same second coordinate, but that is OK.



Mathematical definition of function

A function $f$ is a
mathematical structure consisting of the following objects:

  • A set called the domain of $f$, denoted by $\text{dom} f$.
  • A set called the codomain of $f$, denoted by $\text{cod} f$.
  • A set of ordered pairs called the graph of $ f$, with the following properties:
  • $\text{dom} f$ \text{dom} fis the set of all first coordinates of pairs in the graph of $f$.
  • Every second coordinate of a pair in the graph of $f$ is in $\text{cod} f$ (but $\text{cod} f$ may contain other elements).
  • The graph of $f$ has the functional property.

Using arrow notation, this implies that $f:\text{dom}f\to\text{cod} f$.

Remark

The main difference between the specification of function given previously and this definition is that the definition replaces the statement “$f$ has a value at $a$” by introducing a set of ordered pairs (the graph) with the functional property.

  • This set of ordered pairs is extra structure introduced by the definition mainly in order to make the definition a classical sets-with-structure.
  • This makes the graph, which should be a concept derived from the concept of function, appear to be a necessary part of the function.
  • That suggests incorrectly that the graph is more of a primary intuition that other intuitions such as function as map, function as transformer, and other points of view discussed in the article Images and meta­phors for functions.
  • The concept of graph of a function is indeed an important intuition, and is discussed with examples in the articles Graphs of continuous functions and Graphs of finite functions.
  • Nevertheless, the fact that the concept of graph appears in the definition of function does not make it the most important intuition.

Examples

  • Let $F$ have graph $\{(1,2), (2,4), (3,2), (5,8)\}$ and define $A = \{1, 2, 3, 5\}$ and $B = \{2, 4, 8\}$. Then $F:A\to B$ is a function. In speaking, we would usually say, “$F$ is a function from $A$ to $B$.”
  • Let $G$ have graph $\{(1,2), (2,4), (3,2), (5,8)\}$ (same as above), and define $A = \{1, 2, 3, 5\}$ and $C = \{2, 4, 8, 9, 11, \pi, 3/2\}$. Then $G:A\to C$ is a (admittedly ridiculous) function. Note that all the second coordinates of the graph are in the codomain $C$, along with a bunch of miscellaneous suspicious characters that are not second coordinates of pairs in the graph.
  • Let $H$ have graph $\{(1,2), (2,4), (3,2), (5,8)\}$. Then $H:A\to \mathbb{R}$ is a function, since $2$, $4$ and $8$ are all real numbers.
  • Let $D = \{1, 2, 5\}$ and $E = \{1, 2, 3, 4, 5\}$. Then there is no function $D\to A$ and no function $E\to A$ with graph $\{(1,2), (2,4), (3,2), (5,8)\}$. Neither $D$ nor $E$ has exactly the same elements as the first coordinates of the graph.

Identity and inclusion

Suppose we have two sets  A and  B with $A\subseteq B$.

  • The identity function on A is the function ${{\operatorname{id}}_{A}}:A\to A$ defined by ${{\operatorname{id}}_{A}}(x)=x$ for all $x\in A$. (Many authors call it ${{1}_{A}}$).
  • When $A\subseteq B$, the inclusion function from $A$ to $B$ is the function $i:A\to B$ defined by $i(x)=x$ for all $x\in A$. Note that there is a different function for each pair of sets $A$ and $B$ for which $A\subseteq B$. Some authors call it ${{i}_{A,\,B}}$ or $\text{in}{{\text{c}}_{A,\,B}}$.

The identity function and an inclusion function for the same set $A$ have exactly the same graph, namely $\left\{ (a,a)|a\in A \right\}$. More about this below.

Other definitions of function

Original abstract definition of function

Definition

  • A function $f$ is a set of ordered pairs with the functional property.
  • If $f$ is a function according to this definition, the domain of $f$ is the set of first coordinates of all the pairs in $f$.
  • If $x\in \text{dom} f$, then we define the value of $f$ at $x$, denoted by $f(x)$, to be the second coordinate of the only ordered pair in $f$ whose first coordinate is $x$.

Remarks

  • This definition is still widely used in mathematical writing.
  • Many authors do not tell you which definition they are using.
  • For many purposes (including freshman calculus for the most part) it does not matter which definition is used.
  • In some branches of math, the modern definition adds great clarity to many complicated situations; using the older definition can even make it difficult to describe some important constructions. There is more about this in New Approaches below.

Possible confusion

Some confusion can result because of the presence of these two different definitions.

  • For example, since the identity function ${{\operatorname{id}}_{A}}:A\to A$ and the inclusion function ${{i}_{A,\,B}}:A\to B$ have the same graph, users of the older definition are required in theory to say they are the same function.
  • Also it requires you to say that the graph of a function is the same thing as the function.
  • In my observation, this does not make a problem in practice, unless there is a very picky person in the room.
  • It also appears to me that the modern definition is (quite rightly) winning and the original abstract definition is disappearing.

Multivalued function

The phrase multivalued function refers to an object that is like a function $f:S\to T$ except that for $s\in S$, $f(s)$ may denote more than one value.

Examples

  • Multivalued functions arose in considering complex functions. In cohttp://www.abstractmath.org/MM/MMon practice, the symbol $\sqrt{4}$ denoted $2$, although $-2$ is also a square root of $4$. But in complex function theory, the square root function takes on both the values $2$ and $-2$. This is discussed in detail in Wikipedia.
  • The antiderivative is an example of a multivalued operator. For any constant $C$, $\frac{x^3}{3}+C$ is an antiderivative of $x^2$, so that $\frac{x^3}{3}$, $\frac{x^3}{3}+42$, $\frac{x^3}{3}-1$ and $\frac{x^3}{3}+2\pi$ are among the infinitely many antiderivatives of $x^2$.

A multivalued function $f:S\to T$ can be modeled as a function with domain $S$ and codomain the set of all subsets of $T$. The two meanings are equivalent in a strong sense (naturally equivalent). Even so, it seems to me that they represent two differ­ent ways of thinking about
multivalued functions. (“The value may be any of these things…” as opposed to “The value is this whole set of things.”)

Some older mathematical papers in com­plex func­tion theory do not tell you that their functions are multi­valued. There was a time when com­plex func­tion theory was such a Big Deal in research mathe­matics that the phrase “func­tion theory” meant complex func­tion theory and every mathe­ma­tician with a Ph. D. knew that complex functions were multi­valued.

Partial function

A partial function $f:S\to T$ is just like a function except that its input may be defined on only a subset of $S$. For example, the function $f(x):=\frac{1}{x}$ is a partial function from the real numbers to the real numbers.

This models the behavior of computer programs (algorithms): if you consider a program with one input and one output as a function, it may not be defined on some inputs because for them it runs forever (or gives an error message).

In some texts in computing science and mathematical logic, a function is by
convention a partial function, and this fact may not be mentioned explicitly, especially in research papers.

The phrases “multivalued function” and “partial function” upset some picky types who say things like, “But a multi­valued func­tion is not a func­tion!”. A hot dog is not a dog, either. I once had a Russian teacher who was Polish and a German teacher who was Hungarian. So what? See the Hand­book (click on
radial category).

New approaches to functions

All the definitions of function given here produce mathematical structures, using the traditional way to define mathematical objects in terms of sets. Such definitions have disadvantages.

Mathematicians have many ways to think about functions. That a function is a set of ordered pairs with a certain property (functional) and possibly some ancillary ideas (domain, codomain, and others) is not the way we usually think about them$\ldots$Except when we need to reduce the thing we are studying to its absolutely most abstract form to make sure our proofs are correct.
That most abstract form is what I have called the rigorous view or the dry bones and it is when that reasoning is needed that the sets-with-structure approach has succeeded.

Our practice of abstraction has led us to new approaches to talking about functions. The most important one currently is category theory. Roughly, a category is a bunch of objects together with some arrows going between them that can be composed head to tail. Functions between sets are examples of this: the sets are the objects and the functions the arrows. But arrows in a category do not have to be functions; in that way category theory is an abstraction of functions.

This abstracts the idea of function in a way that brings out common ideas in various branches of math. Research papers in many branches of mathematics now routinely use the language of category theory. Categories now appear in some undergraduate math courses, meaning that Someone needs to write a chapter on category theory for abstractmath.org.

Besides category theory, computing scientists have come up with other abstract ways of dealing with functions, for example type theory. It has not come as far along as category theory, but has shown recent signs of major progress.

Both category theory and type theory define math objects in terms of their effect on and relationship with other math objects. This makes it possible to do abstract math entirely without using sets-with-structure as a means of defining concepts.

References

  • Functions in Wikipedia. This is an extensive and mostly well-done description of the use of functions in mathematics.

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 2.5 License.

Send to Kindle

Power

I have rewritten the entry to “power” in the abstractmath.org Glossary:

POWER

Here are three variant phrases that say that $125=5^3$:

  • “$125$ is a power of $5$ with exponent $3$”.
  • “$125$ is the third power of $5$”.
  • “$125$ is $5$ to the third power”.

Some students are confused by such statements, and conclude that $3$ is the “power”. This usage appears in print in Wikipedia in its entry on Exponentiation (as it was on 22 November 2016):

“…$b^n$ is the product of multiplying $n$ bases:

\[b^n = \underbrace{b \times \cdots \times b}_n\]

In that case, $b^n$ is called the $n$-th power of $b$, or $b$ raised to the power $n$.”

As a result, students (and many mathematicians) refer to $n$ as the “power” in any expression of the form “$a^n$”. The number $n$ should be called the “exponent”. The word “power” should refer only to the result $a^n$. I know mathematical terminology is pretty chaotic, but it is silly to refer both to $n$ and to $a^n$ as the “power”.

Almost as silly as using $(a,b)$ to refer to an open interval, an ordered pair and the GCD. (See The notation $(a,b)$.)

Suggestion for lexicographical research: How widespread does referring to $n$ as the “power” come up in math textbooks or papers? (See usage.)

Thanks to Tomaz Cedilnik for comments on the first version of this entry.

Send to Kindle

Representations of functions I

Introduction to this post

I am writing a new abstractmath chapter called Representations of Functions. It will replace some of the material in the chapter Functions: Images, Metaphors and Representations.

This post includes a draft of the introduction to the new chapter (immediately below) and of the section Graphs of continous functions of one variable. Later posts will concern multivariable continuous functions, probably in two or three sections, and finite discrete functions.

Introduction to the new abstractmath chapter on representations of functions

Functions can be represented visually in many different ways. There is a sharp difference between representing continuous functions and representing discrete functions.

For a continuous function $f$, $f(x)$ and $f(x’)$ tend to be close together when $x$ and $x’$ are close together. That means you can represent the values at an infinite number of points by exhibiting them for a bunch of close-together points. Your brain will automatically interpret the points nearby that are not represented.

Nothing like this works for discrete functions. As you will see in the section on discrete functions, many different arrangements of the inputs and outputs can be made. In fact, different arrangements may be useful for representing different properties of the function.

Illustrations

The illustrations were created using these Mathematica Notebooks:

These notebooks contain many more examples of the ways functions can be represented than are given in this article. The notebooks also contain some manipulable diagrams which may help you understand the diagrams. In addition, all the 3D diagrams can be rotated using the cursor to get different viewpoints. You can access these tools if you have Mathematica, which is available for free for faculty and students at many universities, or with Mathematica CDF Player, which runs on Windows, Mac and Linux.

Like everything in abstractmath.org, the notebooks are covered by a Creative Commons ShareAlike 3.0 License.

Segments posted so far

Graphs of continous functions of one variable

The most familiar representations of continuous functions are graphs of functions with one real variable. Students usually first see these in secondary school. Such representations are part of the subject called Analytic Geometry. This section gives examples of such functions.

There are other ways to represent continuous functions, in particular the cograph and the endograph. These will be the subject of a separate post.

The graph of a function $f:S\to T$ is the set of ordered pairs $\{(x,f(x))\,|\,x\in S\}$. (More about this definition here.)

In this section, I consider continuous functions for which $S$ and $T$ are both subsets of the real numbers. The mathematical graph of such a function are shown by plotting the ordered pairs $(x,f(x))$ as points in the two-dimensional $xy$-plane. Because the function is continuous, when $x$ and $x’$ are close to each other, $f(x)$ and $f(x’)$ tend to be close to each other. That means that the points that have been plotted cause your brain to merge together into a nice curve that allows you to visualize how $f$ behaves.

Example

This is a representation of the graph of the curve $g(x):=2-x^2$ for approximately the interval $(-2,2)$. The blue curve represents the graph.

Graph of a function.

The brown right-angled line in the upper left side, for example, shows how the value of independent variable $x$ at $(0.5)$ is plotted on the horizontal axis, and the value of $g(0.5)$, which is $1.75$, is plotted on the vertical axis. So the blue graph contains the point $(0.5,g(0.5))=(0.5,1.75)$. The animated gif upparmovie.gif shows a moving version of how the curve is plotted.

Fine points

  • The mathematical definition of the graph is that it is the set $\{(x,2-x^2)\,|\,x\in\mathbb{R}\}$. The blue curve is not, of course, the mathematical graph, it represents the mathematical graph.
  • The blue curve consists of a large but finite collection of pixels on your screen, which are close enough together to appear to form a continuous curve which approximates the mathematical graph of the function.
  • Notice that I called the example the “representation of the graph” instead of just “graph”. That maintains the distinction between the mathematical ordered pairs $(x,g(x))$ and the pixels you see on the screen. But in fact mathe­maticians and students nearly always refer to the blue line of pixels as the graph. That is like pointing to a picture of your grandmother and saying “this is my grandmother”. There is nothing wrong with saying things that way. But it is worth understanding that two different ideas are being merged.

Discontinuous functions

A discontinuous function which is continuous except for a small finite number of breaks can also be represented with a graph.

Example

Below is the function $f:\mathbb{R}\to\mathbb{R}$ defined by
\[f(x):=\left\{
\begin{align}
2-x^2\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(x\gt0) \\
1-x^2\,\,\,\,\,\,(-1\lt x\lt 0) \\
2-x^2\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(x\lt-1)
\end{align}\right.\]

Graph of a discontinuous function.

Example

The Dirichlet function is defined by
\[F(x):=
\begin{cases}
1 &
\text{if }x\text{ is rational}\\
\frac{1}{2} &
\text{if }x\text{ is irrational}\\ \end{cases}\]  for all real $x$.

The abmath article Examples of functions spells out in detail what happens when you try to draw this function.

Graphs can fool you

The graph of a continuous function cannot usually show the whole graph, unless it is defined only on a finite interval. This can lead you to jump to conclusions.

Example

For example, you can’t tell from the the graph of the function $y=2-x^2$ whether it has a local minimum (because the graph does not show all of the function), although you can tell by using calculus on the formula that it does not have one. The graph looks like it might have a vertical asymptotes, but it doesn’t, again as you can tell from the formula.

Discovering facts about a function
by looking at its graph
is useful but dangerous.

Example

Below is the graph of the function
\[f(x)=.0002{{\left( \frac{{{x}^{3}}-10}{3{{e}^{-x}}+1}
\right)}^{6}}\]

If you didn’t know the formula for the function (but know it is continuous), you could still see that it has a local maximum somewhere to the right of $x=1$. It looks like it has one or more zeroes around $x=-1$ and $x=2$. And it looks like it has an asymptote somewhere to the right of $x=2.5$.

If you do know the formula, you can find out many things about the function that you can’t depend on the graph to see.

  • You can see immediately that $f$ has a zero at $x=\sqrt[3]{10}$, which is about $2.15$.
  • If you notice that the denominator is positive for all $x$, you can figure out that
    • $\sqrt[3]{10}$ is the only root.
    • $f(x)\geq0$ for all $x$.
    • $f$ has an asymptote as $x\to-\infty$ (use L’Hôpital).
  • Numerical analysis (I used Mathematica) shows that $f'(x)$ has two zeros, at $\sqrt[3]{10}$ and at about $x=1.1648$. $f”(1.1648)$ is about $-10.67$ , which strongly suggests that $f$ has a local max near $1.1648$, consistent with the graph.
  • Since $f$ is defined for every real number, it can’t have a vertical asymptote anywhere. The graph looks like it becomes vertical somewhere to the right of $x=2.4$, but that is simply an illustration of the unbelievably fast growth of any exponential function.
  • The section on Zooming and Chunking gives other details.

    Acknowledgments

    Sue VanHattum.


    Creative Commons License

    This work is licensed under a Creative Commons Attribution-ShareAlike 2.5 License.

    Send to Kindle

    Insights into mathematical definitions

    My general practice with abstractmath.org has been to write about the problems students have at the point where they first start studying abstract math, with some emphasis on the languages of math. I have used my own observations of students, lexicographical work I did in the early 2000’s, and papers written by workers in math ed at the college level.

    A few months ago, I finished revising and updating abstractmath.org. This took rather more than a year because among other things I had to reconstitute the files so that the html could be edited directly. During that time I just about quit reading the math ed literature. In the last few weeks I have found several articles that have changed my thinking about some things I wrote in abmath, so now I need to go back and revise some more!

    In this post I will make some points about definitions that I learned from the paper by Edwards and Ward and the paper by Selden and Selden

    I hope math ed people will read the final remarks.

    Peculiarities of math definitions

    When I use a word, it means just what I choose it to mean–neither more nor less.” — Humpty Dumpty

    A mathematical definition is fundamentally different from other sorts of definitions in two different ways. These differences are not widely appreciated by students or even by mathematicians. The differences cause students a lot of trouble.

    List of properties

    One of the ways in which a math definition is different from other kinds is that the definition of a math object is given by accumulation of attributes, that is, by listing properties that the object is required to have. Any object defined by the definition must have all those properties, and conversely any object with all the properties must be an example of the type of object being defined. Furthermore, there is no other criterion than the list of attributes.

    Definitions in many fields, including some sciences, don’t follow this rule. Those definitions may list some properties the objects defined may have, but exceptions may be allowed. They also sometimes give prototypical examples. Dictionary definitions are generally based on observation of usage in writing and speech.

    Imposed by decree

    One thing that Edwards and Ward pointed out is that, unlike definitions in most other areas of knowledge, a math definition is stipulated. That means that meaning of (the name of) a math object is imposed on the reader by decree, rather than being determined by studying the way the word is used, as a lexicographer would do. Mathematicians have the liberty of defining (or redefining) a math object in any way they want, provided it is expressed as a compulsory list of attributes. (When I read the paper by Edwards and Ward, I realized that the abstractmath.org article on math definitions did not spell that out, although it was implicit. I have recently revised it to say something about this, but it needs further work.)

    An example is the fact that in the nineteenth century some mathe­maticians allowed $1$ to be a prime. Eventually they restricted the definition to exclude $1$ because including it made the statement of the Fundamental Theorem of Arithmetic complicated to state.

    Another example is that it has become common to stipulate codomains as well as domains for functions.

    Student difficulties

    Giving the math definition low priority

    Some beginning abstract math students don’t give the math definition the absolute dictatorial power that it has. They may depend on their understanding of some examples they have studied and actively avoid referring to the definition. Examples of this are given by Edwards and Ward.

    Arbitrary bothers them

    Students are bothered by definitions that seem arbitrary. This includes the fact that the definition of “prime” excludes $1$. There is of course no rule that says definitions must not seem arbitrary, but the students still need an explanation (when we can give it) about why definitions are specified in the way they are.

    What do you DO with a definition?

    Some students don’t realize that a definition gives a magic formula — all you have to do is say it out loud.
    More generally, the definition of a kind of math object, and also each theorem about it, gives you one or more methods to deal with the type of object.

    For example, $n$ is a prime by definition if $n\gt 1$ and the only positive integers that divide $n$ are $1$ and $n$. Now if you know that $p$ is a prime bigger than $10$ then you can say that $p$ is not divisible by $3$ because the definition of prime says so. (In Hogwarts you have to say it in Latin, but that is no longer true in math!) Likewise, if $n\gt10$ and $3$ divides $n$ then you can say that $n$ is not a prime by definition of prime.

    The paper by Bills and Tall calls this sort of thing an operable definition.

    The paper by Selden and Selden gives a more substantial example using the definition of inverse image. If $f:S\to T$ and $T’\subseteq T$, then by definition, the inverse image $f^{-1}T’$ is the set $\{s\in S\,|\,f(s)\in T’\}$. You now have a magic spell — just say it and it makes something true:

    • If you know $x\in f^{-1}T’$ then can state that $f(x)\in T’$, and all you need to justify that statement is to say “by definition of inverse image”.
    • If you know $f(x)\in T’$ then you can state that $x\in f^{-1}T’$, using the same magic spell.

    Theorems can be operable, too. Wiles’ Theorem wipes out the possibility that there is an integer $n$ for which $n^{42}=365^{42}+666^{42}$. You just quote Wiles’ Theorem — you don’t have to calculate anything. It’s a spell that reveals impossibilities.

    What the operability of definitions and theorems means is:

    A definition or theorem is not just a static statement,it is a weapon for deducing truth.

    Some students do not realize this. The students need to be told what is going on. They do not have to be discarded to become history majors just because they may not have the capability of becoming another Andrew Wiles.

    Final remarks

    I have a wish that more math ed people would write blog posts or informal articles (like the one by Edwards and Ward) about what that have learned about students learning math at the college level. Math ed people do write scholarly articles, but most of the articles are behind paywalls. We need accessible articles and blog posts aimed at students and others aimed at math teachers.

    And feel free to steal other math ed people’s ideas (and credit them in a footnote). That’s what I have been doing in abstractmath.org and in this blog for the last ten years.

    References


  • Bills, L., & Tall, D. (1998). Operable definitions in advanced mathematics: The case of the least upper bound. In A. Olivier & K. Newstead (Eds.), Proceedings of the 22nd Conference of the International Group for the Psychology of Mathematics Education, Vol. 2 (pp. 104-111). Stellenbosch, South Africa: University of Stellenbosch.
  • B. S. Edwards, and M. B. Ward, Surprises from mathematics education research: Student (mis) use of mathematical definitions (2004). American Mathematical Monthly, 111, 411-424.
  • G. Lakoff, Women, Fire and Dangerous
    Things
    . University of Chicago Press, 1990. See his discussion of concepts and prototypes.
  • J. Selden and A. Selden, Proof Construction Perspectives: Structure, Sequences of Actions, and Local Memory, Extended Abstract for KHDM Conference, Hanover, Germany, December 1-4, 2015. This paper may be downloaded from Academia.edu.
  • A Handbook of mathematical discourse, by Charles Wells. See concept, definition, and prototype.
  • Definitions, article in abstractmath.org. (Some of the ideas in this post have now been included in this article, but it is due for another revision.)
  • Definitions in logic and mathematics in Wikipedia.
  • Creative Commons License

    This work is licensed under a Creative Commons Attribution-ShareAlike 2.5 License.

    Send to Kindle

    Very early difficulties II

    Very early difficulties II

    This is the second part of a series of posts about certain difficulties math students have in the very early stages of studying abstract math. The first post, Very early difficulties in studying abstract math, gives some background to the subject and discusses one particular difficulty: Some students do not know that it is worthwhile to try starting a proof by rewriting what is to be proved using the definitions of the terms involved.

    Math StackExchange

    The website Math StackExchange is open to any questions about math, even very easy ones. It is in contrast with Math OverFlow, which is aimed at professional mathematicians asking questions in their own field.

    Math SE contains many examples of the early difficulties discussed in this series of posts, and I recommend to math ed people (not just RUME people, since some abstract math occurs in advanced high school courses) that they might consider reading through questions on Math SE for examples of misunderstanding students have.

    There are two caveats:

    • Most questions on Math SE are at a high enough level that they don’t really concern these early difficulties.
    • Many of the questions are so confused that it is hard to pinpoint what is causing the difficulty that the questioner has.

    Connotations of English words

    The terms(s) defined in a definition are often given ordinary English words as names, and the beginner automatically associates the connotations of the meaning of the English word with the objects defined in the definition.

    Infinite cardinals

    If $A$ if a finite set, the cardinality of $A$ is simply a natural number (including $0$). If $A$ is a proper subset of another set $B$, then the cardinality of $A$ is strictly less than the cardinality of $B$.

    In the nineteenth century, mathematicians extended the definition of cardinality for infinite sets, and for the most part cardinality has the same behavior as for finite sets. For example, the cardinal numbers are well-ordered. However, for infinite sets it is possible for a set and a proper subset of the set to have the same cardinality. For example, the cardinality of the set of natural numbers is the same as the cardinality of the set of rational numbers. This phenomenon causes major cognitive dissonance.

    Question 1331680 on Math Stack Exchange shows an example of this confusion. I have also discussed the problem with cardinality in the abstractmath.org section Cardinality.

    Morphism in category theory

    The concept of category is defined by saying there is a bunch of objects called objects (sorry bout that) and a bunch of objects called morphisms, subject to certain axioms. One requirement is that there are functions from morphisms to objects choosing a “domain” and a “codomain” of each morphism. This is spelled out in Category Theory in Wikibooks, and in any other book on category theory.

    The concepts of morphism, domain and codomain in a category are therefore defined by abstract definitions, which means that any property of morphisms and their domains and codomains that is true in every category must follow from the axioms. However, the word “morphism” and the talk about domains and codomains naturally suggests to many students that a morphism must be a function, so they immediately and incorrectly expect to evaluate it at an element of its domain, or to treat it as a function in other ways.

    Example

    If $\mathcal{C}$ is a category, its opposite category $\mathcal{C}^{op}$ is defined this way:

    • The objects of $\mathcal{C}^{op}$ are the objects of $\mathcal{C}$.
    • A morphism $f:X\to Y$ of $\mathcal{C}^{op}$ is a morphism from $Y$ to $X$ of $\mathcal{C}$ (swap the domain and codomain).

    In Question 980933 on Math SE, the questioner is saying (among other things) that in $\text{Set}^{op}$, this would imply that there has to be a morphism from a nonempty set to the empty set. This of course is true, but the questioner is worried that you can’t have a function from a nonempty set to the empty set. That is also true, but what it implies is that in $\text{Set}^{op}$, the morphism from $\{1,2,3\}$ to the empty set is not a function from $\{1,2,3\}$ to the empty set. The morphism exists, but it is not a function. This does not any any sense make the definition of $\text{Set}^{op}$ incorrect.

    Student confusion like this tends to make the teacher want to have a one foot by six foot billboard in his classroom saying

    A MORPHISM DOESN’T HAVE TO BE A FUNCTION!

    However, even that statement causes confusion. The questioner who asked Question 1594658 essentially responded to the statement in purple prose above by assuming a morphism that is “not a function” must have two distinct values at some input!

    That questioner is still allowing the connotations of the word “morphism” to lead them to assume something that the definition of category does not give: that the morphism can evaluate elements of the domain to give elements of the codomain.

    So we need a more elaborate poster in the classroom:

    The definition of “category” makes no requirement
    that an object has elements
    or that morphisms evaluate elements.

    As was remarked long long ago, category theory is pointless.

    English words implementing logic

    There are lots of questions about logic that show that students really do not think that the definition of some particular logical construction can possibly be correct. That is why in the abstractmath.org chapter on definitions I inserted this purple prose:

    A definition is a totalitarian dictator.

    It is often the case that you can explain why the definition is worded the way it is, and of course when you can you should. But it is also true that the student has to grovel and obey the definition no matter how weird they think it is.

    Formula and term

    In logic you learn that a formula is a statement with variables in it, for example “$\exists x((x+5)^3\gt2)$”. The expression “$(x+5)^3$” is not a formula because it is not a statement; it is a “term”. But in English, $H_2O$ is a formula, the formula for water. As a result, some students have a remarkably difficult time understanding the difference between “term” and “formula”. I think that is because those students don’t really believe that the definition must be taken seriously.

    Exclusive or

    Question 804250 in MathSE says:

    “Consider $P$ and $Q$. Let $P+Q$ denote exclusive or. Then if $P$ and $Q$ are both true or are both false then $P+Q$ is false. If one of them is true and one of them is false then $P+Q$ is true. By exclusive or I mean $P$ or $Q$ but not both. I have been trying to figure out why the truth table is the way it is. For example if $P$ is true and $Q$ is true then no matter what would it be true?”

    I believe that the questioner is really confused by the plus sign: $P+Q$ ought to be true if $P$ and $Q$ are both true because that’s what the plus sign ought to mean.

    Yes, I know this is about a symbol instead of an English word, but I think the difficulty has the same dynamics as the English-word examples I have given.

    If I have understood this difficulty correctly, it is similar to the students who want to know why $1$ is not a prime number. In that case, there is a good explanation.

    Only if

    The phrase “only if” simply does not mean the same thing in math as it does in English. In Question 17562 in MathSE, a reader asks the question, why does “$P$ only if $Q$” mean the same as “if $P$ then $Q$” instead of “if $Q$ then $P$”?

    Many answerers wasted a lot of time trying to convince us that “$P$ only if $Q$” mean the same as “if $P$ then $Q$” in ordinary English, when in fact it does not. That’s because in English, clauses involving “if” usually connote causation, which does not happen in math English.

    Consider these two pairs of examples.

    1. “I take my umbrella only if it is raining.”
    2. “If I take my umbrella, then it is raining.”
    3. “I flip that switch only if a light comes on.”
    4. “If I flip that switch, a light comes on.”

    The average non-mathematical English speaker will easily believe that (1) and (4) are true, but will balk and (2) and (3). To me, (3) means that the light coming on makes me flip the switch. (2) is more problematical, but it does (to me) have a feeling of causation going the wrong way. It is this difference that causes students to balk at the equivalence in math of “$P$ only if $Q$” and “If $P$, then $Q$”. In math, there is no such thing as causation, and the truth tables for implication force us to live with the fact that these two sentences mean the same thing.

    Henning Makholm’ answer to Question 17562 begins this way: “I don’t think there’s really anything to understand here. One simply has to learn as a fact that in mathematics jargon the words ‘only if’ invariably encode that particular meaning. It is not really forced by the everyday meanings of ‘only’ and’ if’ in isolation; it’s just how it is.” That is the best way to answer the question. (Other answerers besides Makholm said something similar.)

    I have also discussed this difficulty (and other difficulties with logic) in the abmath section on “only if“.

    References

    Creative Commons License

    This work is licensed under a Creative Commons Attribution-ShareAlike 2.5 License.

    Send to Kindle

    Very early difficulties in studying abstract math

    Introduction

    There are a some difficulties that students have at the very beginning of studying abstract math that are overwhelmingly important, not because they are difficult to explain but because too many teachers don’t even know the difficulties exist, or if they do, they think they are trivial and the students should know better without being told. These difficulties cause too many students to give up on abstract math and drop out of STEM courses altogether.

    I spent my entire career in math at Case Western Reserve University. I taught many calculus sections, some courses taken by math majors, and discrete math courses taken mostly by computing science majors. I became aware that some students who may have been A students in calculus essentially fell off a cliff when they had to do the more abstract reasoning involved in discrete math, and in the initial courses in abstract algebra, linear algebra, advanced calculus and logic.

    That experience led me to write the Handbook of Mathematical Discourse and to create the website abstractmath.org. Abstractmath.org in particular grew quite large. It does describe some of the major difficulties that caused good students to fall of the abstraction cliff, but also describes many many minor difficulties. The latter are mostly about the peculiarities of the languages of math.

    I have observed people’s use of language since I was like four or five years old. Not because I consciously wanted to — I just did. When I was a teenager I would have wanted to be a linguist if I had known what linguistics is.

    I will describe one of the major difficulties here (failure to rewrite according to the definition) with an example. I am planning future posts concerning other difficulties that occur specifically at the very beginning of studying abstract math.

    Rewrite according to the definition

    To prove that a statement
    involving some concepts is true,
    start by rewriting the statement
    using the definitions of the concepts.

    Example

    Definition

    A function $f:S\to T$ is surjective if for any $t\in T$ there is an $s\in S$ for which $f(s)=t$.

    Definition

    For a function $f:S\to T$, the image of $f$ is the set \[\{t\in T\,|\,\text{there is an }s\in S\text{ for which }f(s)=t\}\]

    Theorem

    Let $f:S\to T$ be a function between sets. Then $f$ is surjective if and only if the image of $f$ is $T$.

    Proof

    If $f$ is surjective, then the statement “there is an $s\in S$ for which $f(s)=t$” is true for any $t\in T$ by definition of surjectivity. Therefore, by definition of image, the image of $f$ is $T$.

    If the image of $f$ is $T$, then the definition of image means that there is an $s\in S$ for which $f(s)=t$ for any $t\in T$. So by definition of surjective, $f$ is surjective.

    “This proof is trivial”

    The response of many mathematicians I know is that this proof is trivial and a student who can’t come up with it doesn’t belong in a university math course. I agree that the proof is trivial. I even agree that such a student is not a likely candidate for getting a Ph.D. in math. But:

    • Most math students in an American university are not going to get a Ph.D. in math. They may be going on in some STEM field or to teach high school math.
    • Some courses taken by students who are not math majors take courses in which simple proofs are required (particularly discrete math and linear algebra). Some of these students may simply be interested in math for its own sake!

    A sizeable minority of students who are taking a math course requiring proofs need to be told the most elementary facts about how to do proofs. To refuse to explain these facts is a disfavor to the mathematics community and adds to the fear and dislike of math that too many people already have.

    These remarks may not apply to students in many countries other than the USA. See When these problems occur.

    “This proof does not describe how mathematicians think”

    The proof I wrote out above does not describe how I would come up with a proof of the statement, which would go something like this: I do math largely in pictures. I envision the image of $f$ as a kind of highlighted area of the codomain of $f$. If $f$ is surjective, the highlighting covers the whole codomain. That’s what the theorem says. I wouldn’t dream of writing out the proof I gave about just to verify that it is true.

    More examples

    Abstractmath.org and Gyre&Gimble contain several spelled-out theorems that start by rewriting according to the definition. In these examples one then goes on to use algebraic manipulation or to quote known theorems to put the proof together.

    Comments

    This post contains testable claims

    Herein, I claim that some things are true of students just beginning abstract math. The claims are based largely on my teaching experience and some statements in the math ed literature. These claims are testable.

    When these problems occur

    In the United States, the problems I describe here occur in the student’s first or second year, in university courses aimed at math majors and other STEM majors. Students typically start university at age 18, and when they start university they may not choose their major until the second year.

    In much of the rest of the world, students are more likely to have one more year in a secondary school (sixth form in England lasts two years) or go to a “college” for a year or two before entering a university, and then they get their bachelor’s degree in three years instead of four as in the USA. Not only that, when they do go to university they enter a particular program immediately — math, computing science, etc.

    These differences may mean that the abstract math cliff occurs early in a student’s university career in the USA and before the student enters university elsewhere.

    In my experience at CWRU, some math majors fall of the cliff, but the percentage of computing science students having trouble was considerably greater. On the other hand, more of them survived the discrete math course when I taught it because the discrete math course contain less abstraction and more computation than the math major courses (except linear algebra, which had a balance similar to the discrete math course — and was taken by a sizeable number of non-math majors).

    References

    Creative Commons License

    This work is licensed under a Creative Commons Attribution-ShareAlike 2.5 License.

    Send to Kindle

    abstractmath.org beta

    Around two years ago I began a systematic revision of abstractmath.org. This involved rewriting some of the articles completely, fixing many errors and bad links, and deleting some articles. It also involved changing over from using Word and MathType to writing directly in html and using MathJax. The changeover was very time consuming.

    Before I started the revision, abstractmath.org was in alpha mode, and now it is in beta. That means it still has flaws, and I will be repairing them probably till I can’t work any more, but it is essentially in a form that approximates my original intention for the website.

    I do not intend to bring it out of beta into “final form”. I have written and published three books, two of them with Michael Barr, and I found the detailed work necessary to change it into its final form where it will stay frozen was difficult and took me away from things I want to do. I had to do it that way then (the olden days before the internet) but now I think websites that are constantly updated and have live links are far more useful to people who want to learn about some piece of math.

    My last book, the Handbook of Mathematical Discourse, was in fact published after the internet was well under way, but I was still thinking in Olden Days Paper Mode and never clearly realized that there was a better way to do things.

    In any case, the entire website (as well as Gyre&Gimble) is published under a Creative Commons license, so if someone wants to include part or all of it in another website, or in a book, and revise it while they do it, they can do so as long as they publish under the terms of the license and link to abstractmath.org.

    Previous posts about the evolution of abstractmath.org

    Books by Michael Barr and Charles Wells

    Toposes, triples and theories

    Category theory for computing science

    Creative Commons License

    This work is licensed under a Creative Commons Attribution-ShareAlike 2.5 License.

    Send to Kindle

    Recent revisions to abstractmath.org

    For the last six months or so I have been systematically going through the abstractmath.org files, editing them for consistency, updating them, and in some cases making major revisions.

    In the past I have usually posted revised articles here on Gyre&Gimble, but WordPress makes it difficult to simply paste the HTML into the WP editor, because the editor modifies the HTML and does things such as recognizing line breaks and extra spaces which an HTML interpreters is supposed to ignore.

    Here are two lists of articles that I have revised, with links.

    Major revisions

    Other revised articles

    Other recent changes

    Creative Commons License

    This work is licensed under a Creative Commons Attribution-ShareAlike 2.5 License.

    Send to Kindle

    Notation for sets

    This is a revision of the section of abstractmath.org on notation for sets.

    Sets of numbers

    The following notation for sets of numbers is fairly standard.

    Remarks

    • Some authors use $\mathbb{I}$ for $\mathbb{Z}$, but $\mathbb{I}$ is also used for the unit interval.
    • Many authors use $\mathbb{N}$ to denote the nonnegative integers instead
      of the positive ones.
    • To remember $\mathbb{Q}$, think “quotient”.
    • $\mathbb{Z}$ is used because the German word for “integer” is “Zahl”.

    Until the 1930’s, Germany was the world center for scientific and mathematical study, and at least until the 1960’s, being able to read scientific German was was required of anyone who wanted a degree in science. A few years ago I was asked to transcribe some hymns from a German hymnbook — not into English, but merely from fraktur (the old German alphabet) into the Roman alphabet. I sometimes feel that I am the last living American to be able to read fraktur easily.

    Element notation

    The expression “$x\in A$” means that $x$ is an element of the set $A$. The expression “$x\notin A$” means that $x$ is not an element of $A$.

    “$x\in A$” is pronounced in any of the following ways:

    • “$x$ is in $S$”.
    • “$x$ is an element of $S$”.
    • “$x$ is a member of $S$”.
    • “$S$ contains $x$”.
    • “$x$ is contained in $S$”.

    Remarks

    • Warning: The math English phrase “$A$ contains $B$” can mean either “$B\in A$” or “$B\subseteq A$”.
    • The Greek letter epsilon occurs in two forms in math, namely $\epsilon$ and $\varepsilon$. Neither of them is the symbol for “element of”, which is “$\in$”. Nevertheless, it is not uncommon to see either “$\epsilon$” or “$\varepsilon$” being used to mean “element of”.
    Examples
    • $4$ is an element of all the sets $\mathbb{N}$, $\mathbb{Z}$, $\mathbb{Q}$, $\mathbb{R}$, $\mathbb{C}$.
    • $-5\notin \mathbb{N}$ but it is an element of all the others.

    List notation

    Definition: list notation

    A set with a small number of elements may be denoted by listing the elements inside braces (curly brackets). The list must include exactly all of the elements of the set and nothing else.

    Example

    The set $\{1,\,3,\,\pi \}$ contains the numbers $1$, $3$ and $\pi $ as elements, and no others. So $3\in \{1,3,\pi \}$ but $-3\notin \{1,\,3,\,\pi \}$.

    Properties of list notation

    List notation shows every element and nothing else

    If $a$ occurs in a list notation, then $a$ is in the set the notation defines.  If it does not occur, then it is not in the set.

    Be careful

    When I say “$a$ occurs” I don’t mean it necessarily occurs using that name. For example, $3\in\{3+5,2+3,1+2\}$.

    The order in which the elements are listed is irrelevant

    For example, $\{2,5,6\}$ and $\{5,2,6\}$ are the same set.

    Repetitions don’t matter

    $\{2,5,6\}$, $\{5,2,6\}$, $\{2,2,5,6 \}$ and $\{2,5,5,5,6,6\}$ are all different representations of the same set. That set has exactly three elements, no matter how many numbers you see in the list notation.

    Multisets may be written with braces and repeated entries, but then the repetitions mean something.

    When elements are sets

    When (some of) the elements in list notation are themselves sets (more about that here), care is required.  For example, the numbers $1$ and $2$  are not elements of the set \[S:=\left\{ \left\{ 1,\,2,\,3 \right\},\,\,\left\{ 3,\,4 \right\},\,3,\,4 \right\}\]The elements listed include the set $\{1, 2, 3\}$ among others, but not the number $2$.  The set $S$ contains four elements, two sets and two numbers. 

    Another way of saying this is that the element relation is not transitive: The facts that $A\in B$ and $B\in C$ do not imply that $A\in C$. 

    Sets are arbitrary

    • Any mathematical object can be the element of a set.
    • The elements of a set do not have to have anything in common.
    • The elements of a set do not have to form a pattern.
    Examples
    • $\{1,3,5,6,7,9,11,13,15,17,19\}$ is a set. There is no point in asking, “Why did you put that $6$ in there?” (Sets can be arbitrary.)
    • Let $f$ be the function on the reals for which $f(x)=x^3-2$. Then \[\left\{\pi^3,\mathbb{Q},f,42,\{1,2,7\}\right\}\] is a set. Sets do not have to be homogeneous in any sense.


    Setbuilder notation

    Definition:

    Suppose $P$ is an assertion. Then the expression “$\left\{x|P(x) \right\}$” denotes the set of all objects $x$ for which $P(x)$ is true. It contains no other elements.

    • The notation “$\left\{ x|P(x) \right\}$” is called setbuilder notation.
    • The assertion $P$ is called the defining condition for the set.
    • The set $\left\{ x|P(x) \right\}$ is called the truth set of the assertion $P$.
    Examples

    In these examples, $n$ is an integer variable and $x$ is a real variable..

    • The expression “$\{n| 1\lt n\lt 6 \}$” denotes the set $\{2, 3, 4, 5\}$. The defining condition is “$1\lt n\lt 6$”.  The set $\{2, 3, 4, 5\}$ is the truth set of the assertion “n is an integer and $1\lt n\lt 6$”.
    • The notation $\left\{x|{{x}^{2}}-4=0 \right\}$ denotes the set $\{2,-2\}$.
    • $\left\{ x|x+1=x \right\}$ denotes the empty set.
    • $\left\{ x|x+0=x \right\}=\mathbb{R}$.
    • $\left\{ x|x\gt6 \right\}$ is the infinite set of all real numbers bigger than $6$.  For example, $6\notin \left\{ x|x\gt6 \right\}$ and $17\pi \in \left\{ x|x\gt6 \right\}$.
    • The set $\mathbb{I}$ defined by $\mathbb{I}=\left\{ x|0\le x\le 1 \right\}$ has among its elements $0$, $1/4$, $\pi /4$, $1$, and an infinite number of
      other numbers. $\mathbb{I}$ is fairly standard notation for this set – it is called the unit interval.

    Usage and terminology

    • A colon may be used instead of “|”. So $\{x|x\gt6\}$ could be written $\{x:x\gt6\}$.
    • Logicians and some mathematicians called the truth set of $P$ the extension of $P$. This is not connected with the usual English meaning of “extension” as an add-on.
    • When the assertion $P$ is an equation, the truth set of $P$ is usually called the solution set of $P$. So $\{2,-2\}$ is the solution set of $x^2=4$.
    • The expression “$\{n|1\lt n\lt6\}$” is commonly pronounced as “The set of integers such that $1\lt n$ and $n\lt6$.” This means exactly the set $\{2,3,4,5\}$. Students whose native language is not English sometimes assume that a set such as $\{2,4,5\}$ fits the description.

    Setbuilder notation is tricky

    Looking different doesn’t mean they are different.

    A set can be expressed in many different ways in setbuilder notation. For example, $\left\{ x|x\gt6 \right\}=\left\{ x|x\ge 6\text{ and }x\ne 6 \right\}$. Those two expressions denote exactly the same set. (But $\left\{x|x^2\gt36 \right\}$ is a different set.)

    Russell’s Paradox

    In certain areas of math research, setbuilder notation can go seriously wrong. See Russell’s Paradox if you are curious.

    Variations on setbuilder notation

    An expression may be used left of the vertical line in setbuilder notation, instead of a single variable.

    Giving the type of the variable

    You can use an expression on the left side of setbuilder notation to indicate the type of the variable.

    Example

    The unit interval $I$ could be defined as \[\mathbb{I}=\left\{x\in \mathrm{R}\,|\,0\le x\le 1 \right\}\]making it clear that it is a set of real numbers rather than, say rational numbers.  You can always get rid of the type expression to the left of the vertical line by complicating the defining condition, like this:\[\mathbb{I}=\left\{ x|x\in \mathrm{R}\text{ and }0\le x\le 1 \right\}\]

    Other expressions on the left side

    Other kinds of expressions occur before the vertical line in setbuilder notation as well.

    Example

    The set\[\left\{ {{n}^{2}}\,|\,n\in \mathbb{Z} \right\}\]consists of all the squares of integers; in other words its elements are 0,1,4,9,16,….  This definition could be rewritten as $\left\{m|\text{ there is an }n\in \mathrm{}\text{ such that }m={{n}^{2}} \right\}$.

    Example

    Let $A=\left\{1,3,6 \right\}$.  Then $\left\{ n-2\,|\,n\in A\right\}=\left\{ -1,1,4 \right\}$.

    Warning

    Be careful when you read such expressions.

    Example

    The integer $9$ is an element of the set \[\left\{{{n}^{2}}\,|\,n\in \text{ Z and }n\ne 3 \right\}\]It is true that $9={{3}^{2}}$ and that $3$ is excluded by the defining condition, but it is also true that $9={{(-3)}^{2}}$ and $-3$ is not an integer ruled out by the defining condition.

    Reference

    Sets. Previous post.

    Acknowledgments

    Toby Bartels for corrections.

    Creative Commons License< ![endif]>

    This work is licensed under a Creative Commons Attribution-ShareAlike 2.5 License.

    Send to Kindle