abstractmath.org 2.0
help with abstract math

Produced by Charles Wells     Revised 2016-11-04
Introduction to this website    
website TOC    website index   blog

Category theory turns math inside-out. Definitions depend on nothing inside, but on everything outside. -- John Cook

About this post

This is a draft of the first part of an article on category theory.

During the last year or so, I have been monitoring the category theory questions on Math Stack Exchange. Some of the queries are clearly from people who do not have enough of a mathematical background to understand basic abstract reasoning, for example the importance of definitions and the difficulties described in the abmath artice on Dysfunctional attitudes and behaviors. Category theory has become important in several fields outside mathematics, for example computer science and database theory.

This article is intended to get people started in category theory by giving a very detailed definition of "category" and some examples described in detail with an emphasis on how the example fits the definition of category. That's all the present version does, but I intend to add some examples of constructions and properties such as the dual category, product, and other concepts that some of the inquirers on Math Stack Exchange had great difficulty with.

There is no way in which this article is a proper introduction to category theory. It is intended only to give beginners some help over the initial steps of understanding the subject, particularly the aspects of understanding that cause many hopeful math majors to fall off the Abstraction Cliff.

About categories

To be written.

Definition of category

A category is a type of Mathematical structure consisting of two types of data, whose relationships are entirely determined by some axioms. After the definition is complete, I introduce several example categories with a detailed discussion of each one, explaining how they fit the definition of category.

Axiom 1: Data

A category consists of two types of data: objects and arrows.

Notes for Axiom 1

Axiom 2: Domain and codomain

Each arrow of a category has a domain and a codomain, each of which is an object of the category.

Notes for Axiom 2

Axiom 3: Composition

If $f$ and $g$ are arrows in a category for which $\text{cod}(f)=\text{dom}(g)$, as in this diagram:

then there is a unique arrow with domain $A$ and codomain $C$ called the composite of $f$ and $g$.

Notes for Axiom 3

Axiom 4: Identity arrows

  1. For each object $A$ of a category, there is an arrow denoted by $\mathsf{id}_A$.
  2. $\textsf{dom}(\textsf{id}_A)=A$ and $\textsf{cod}(\textsf{id}_A)=A$.
  3. For any object $B$ and any arrow $f:B\to A$, the diagram

  4. For any object $C$ and any arrow $g:A\to C$, the diagram


Notes for Axiom 4

Axiom 5: Associativity

  1. If $f$, $g$ and $h$ are arrows in a category for which $\text{cod}(f)=\text{dom}(g)$ and $\text{cod}(g)=\text{dom}(h)$, as in this diagram:

    then there is a unique arrow $k$ with domain $A$ and codomain $D$ called the composite of $f$, $g$ and $h$.

  2. In the diagram below, the two triangles containing $k$ must both commute.

Notes for Axiom 5

Examples of categories

For these examples, I give a detailed explanation about how they fit the definition of category.

Example 1: MyFin

This first example is a small, finite category which I have named $\mathsf{MyFin}$ ("my finite category"). It is not at all an important category, but it has advantages as a first example.

A correct proof will be based on axioms and theorems.
The proof can be suggested by your intuitions,
but intuitions are not enough.
When working with $\mathsf{MyFin}$ you won't have any intuitions!

A diagram for $\mathsf{MyFin}$

This diagram gives a partial description of $\mathsf{MyFin}$.

Now let's see how to make the diagram above into a category.

Axiom 1: Data

Axiom 2: Domain and Codomain

Axiom 3: Composition

Showing the $\mathsf{MyFin}$ diagram does not completely define $\mathsf{MyFin}$. We must say what the composites of all the paths of length 2 are.

Axiom 4: Identity arrows

Axiom 5: Associativity

Example 2: IntegerDiv

Axiom 1: Data

Axiom 2: Domain and codomain

The arrow denoted by $\textsf{mdn}$ has domain $m$ and codomain $n$.




which may also be shown as

Axiom 3: Composition

The composite of

must be $\textsf{rdt}$, since that is the only arrow with domain $r$ and codomain $t$.

This fact can also be written this way: \[\mathsf{sdt}\circ\textsf{rds}=\textsf{rdt}\]

Axiom 4: Identity arrows

The composites


must commute since the arrows shown are the only possible arrows with the domains and codomains shown. In other words, $\textsf{id}_\textsf{r}=\textsf{rdr}$ and $\textsf{id}_\textsf{s}=\textsf{sds}$.

Axiom 5: Associativity

In the diagram below,

there is only one arrow from one integer to another, so $\textsf{k}$ must be both \[\textsf{tdu}\circ(\textsf{sdt}\circ\textsf{rds})\] and \[(\textsf{tdu}\circ\textsf{sdt})\circ\textsf{rds}\] as required.

Example 3: The category of Sets

In this section, I define the category $\mathsf{Set}$ (that is standard terminology in category theory.) This example will be very different from $\mathsf{MyFin}$, because it involves known mathematical objects -- sets and functions.

Axiom 1: Data

Axiom 2: Domain and codomain

For a given function $f$, $\text{dom}(f)$ is the domain of the function $f$ in the usual sense, and $\text{cod}(f)$ is the codomain of $f$ in the usual sense. (See Functions: specification and definition for more about domain and codomain.)


Axiom 3: Composition

The composite of $f:A\to B$ and $g:B\to C$ is the function $g\circ f:A\to C$ defined by \[\text{(DC)}\,\,\,\,\,\,\,\,\,\,(g\circ f)(a):=g(f(a))\]


Many other categories have a similar definition of composition, including categories whose objects are math structures with underlying sets and whose arrows are structure-preserving functions between the underlying sets. But be warned: There are many useful categories whose arrows do not evaluate at an element of an object because the objects don't have elements. In that case, (DC) is meaningless. This is true of $\mathsf{MyFin}$ and $\mathsf{IntegerDiv}$.

Axiom 4: Identity arrows

For a set $A$, the identity arrow $\textsf{id}_A:A\to A$ is, as you might expect, the identity function defined by $\textsf{id}_A(a)=a$ for every $a\in A$. We must prove that these diagrams commute:

The calculations below show that they commute. They use the definition of composite given by (DC).

Note: In $\mathsf{Set}$, there are generally many arrows from a particular set $S$ to itself (for example there are $4$ from $\{1,2\}$ to itself), but only one is the identity arrow.

Axiom 5: Associativity

Composition of arrows in $\mathsf{Set}$ is associative because function composition is associative. Suppose we have functions as in this diagram:

We must show that the two triangles containing $k$ in this diagram commute:

In algebraic notation, this requires showing that for every element $a\in A$,\[(h\circ(g\circ f))(a))=((h\circ g)\circ f)(a)\]

The calculation below does that. It makes repeated use of Definition (DC) of composition. For any $a\in A$,\[\begin{equation} \begin{split} \big(h\circ (g\circ f)\big)(a) & = h\big((g\circ f)(a)\big) \\ & = h\big(g(f(a))\big) \\ & = (h\circ g)(f(a)) \\ & = \big((h\circ g)\circ f\big)(a) \end{split} \end{equation}\]

Example 4: The category of Monoids

Axiom 1: Data

Axiom 2: Domain and codomain

If $(S,\Delta)$ and $(T,\nabla)$ are monoids and $f:(S,\Delta)\to(T,\nabla)$ is a homomorphism of monoids, then the domain of $f$ is $(S,\Delta)$ and the codomain of $f$ is $(T,\nabla)$.


Axiom 3: Composition

The composite of

is the composite $g\circ f$ as set functions:

It is necessary to check that $g\circ f$ is a monoid homomorphism. The following calculation shows that it preserves the monoid operation; it makes repeated use of equations (DC) and (MM).

The calculation: For elements $r$ and $r'$ of $R$,\[\begin{align*} (g\circ f)(r\,{\scriptstyle \square}\, r') &=g\left(f(r\, {\scriptstyle \square}\, r')\right)\,\,\,\,\,\text{(DC)}\\ &=g\left(f(r) {\scriptstyle\, \Delta}\, f(r')\right)\,\,\,\,\,\text{(MM)}\\ &=g(f(r)){\scriptstyle \,\nabla}\, g(f(r'))\,\,\,\,\text{(MM)}\\ &=(g\circ f)(r){\scriptstyle \,\nabla}\,(g\circ f)(r')\,\,\,\,\,\text{(DC)} \end{align*}\]

The fact that $g\circ f$ preserves the identity of the monoid is shown in the next section.

Axiom 4: Identity arrows

For a monoid $(S,\Delta)$, the identity function $\text{id}_S:S\to S$ preserves the monoid operation $\Delta$, because $\text{id}_S(s\Delta s')=s\Delta s'$ by definition of the identity function, and that is $\text{id}_S(s)\Delta \text{id}_S(s')$ for the same reason.

The required diagrams below must commute because the set functions commute and, by Axiom 3, the set composition of a monoid homomorphism is a monoid homomorphism.

We also need to show that $g\circ f$ as in

preserves identities. This calculation proves that it does; it uses (DC) and (ME)

\[\begin{align*} (g\circ f)(\text{id}_R) &=g(f((\text{id}_R))\\ &=g(\text{id}_S)\\ &=\text{id}_T \end{align*}\]

Axiom 5: Associativity

The diagram

in the category $\mathsf{Set}$ commutes, so the diagram

must also commute.


All these references are available on line.

  Creative Commons License        

This work is licensed under a Creative Commons Attribution-ShareAlike 2.5 License.